问题
If DataFrame with simple index is the case, one may retrieve index from HDFStore as follows:
df = pd.DataFrame(np.random.randn(2, 3), index=list('yz'), columns=list('abc'))
df
>>> a b c
>>> y -0.181063 1.919440 1.550992
>>> z -0.701797 1.917156 0.645707
with pd.HDFStore('test.h5') as store:
store.put('df', df, format='t')
store.select_column('df', 'index')
>>> 0 y
>>> 1 z
>>> Name: index, dtype: object
As stated in the docs.
But in case with MultiIndex such trick doesn't work:
df = pd.DataFrame(np.random.randn(2, 3),
index=pd.MultiIndex.from_tuples([(0,'y'), (1, 'z')], names=['lvl0', 'lvl1']),
columns=list('abc'))
df
>>> a b c
>>> lvl0 lvl1
>>> 0 y -0.871125 0.001773 0.618647
>>> 1 z 1.001547 1.132322 -0.215681
More precisely it returns wrong index:
with pd.HDFStore('test.h5') as store:
store.put('df', df, format='t')
store.select_column('df', 'index')
>>> 0 0
>>> 1 1
>>> Name: index, dtype: int64
How to retrieve correct DataFrame MultiIndex?
回答1:
One may use select
with columns=['index']
parameter specified:
df = pd.DataFrame(np.random.randn(2, 3),
index=pd.MultiIndex.from_tuples([(0,'y'), (1, 'z')], names=['lvl0', 'lvl1']),
columns=list('abc'))
df
>>> a b c
>>> lvl0 lvl1
>>> 0 y -0.871125 0.001773 0.618647
>>> 1 z 1.001547 1.132322 -0.215681
with pd.HDFStore('test.h5') as store:
store.put('df', df, format='t')
store.select('df', columns=['index'])
>>> lvl0 lvl1
>>> 0 y
>>> 1 z
It works but seems not being documented.
来源:https://stackoverflow.com/questions/56403074/how-to-retrieve-pandas-df-multiindex-from-hdfstore