《统计机器学习》中指出:机器学习=模型+策略+算法。其实机器学习可以表示为:Learning= Representation+Evalution+Optimization。我们就可以将这样的表示和李航老师的说法对应起来。机器学习主要是由三部分组成,即:表示(模型)、评价(策略)和优化(算法)。
表示(或者称为:模型):Representation
表示主要做的就是建模,故可以称为模型。模型要完成的主要工作是转换:将实际问题转化成为计算机可以理解的问题,就是我们平时说的建模。类似于传统的计算机学科中的算法,数据结构,如何将实际的问题转换成计算机可以表示的方式。这部分可以见“简单易学的机器学习算法”。给定数据,我们怎么去选择对应的问题去解决,选择正确的已有的模型是重要的一步。
评价(或者称为:策略):Evalution
评价的目标是判断已建好的模型的优劣。对于第一步中建好的模型,评价是一个指标,用于表示模型的优劣。这里就会是一些评价的指标以及一些评价函数的设计。在机器学习中会有针对性的评价指标。
分类问题
优化:Optimization
优化的目标是评价的函数,我们是希望能够找到最好的模型,也就是说评价最高的模型。
来源:CSDN
作者:qq_2353304647
链接:https://blog.csdn.net/qq_39888135/article/details/103455509