问题
I have the following data-frame.
and I have an input list of values
I want to match each item from the input list to the Symbol and Synonym column in the data-frame and to extract only those rows where the input value appears in either the Symbol column or Synonym column(Please note that here the values are separated by '|' symbol).
In the output data-frame I need an additional column Input_symbol which denotes the matching value. So here in this case the desired output will should be like the image bellow.
How can I do the same ?.
回答1:
The question has changed. What you want to do now is to look through the two columns (Symbol and Synonyms) and if you find a value that is inside mylist
return it. If no match you can return 'No match!' (for instance).
import pandas as pd
import io
s = '''\
Symbol,Synonyms
A1BG,A1B|ABG|GAB|HYST2477
A2M,A2MD|CPAMD5|FWP007|S863-7
A2MP1,A2MP
NAT1,AAC1|MNAT|NAT-1|NATI
NAT2,AAC2|NAT-2|PNAT
NATP,AACP|NATP1
SERPINA3,AACT|ACT|GIG24|GIG25'''
mylist = ['GAB', 'A2M', 'GIG24']
df = pd.read_csv(io.StringIO(s))
# Store the lookup serie
lookup_serie = df['Symbol'].str.cat(df['Synonyms'],'|').str.split('|')
# Create lambda function to return first value from mylist, No match! if stop-iteration
f = lambda x: next((i for i in x if i in mylist), 'No match!')
df.insert(0,'Input_Symbol',lookup_serie.apply(f))
print(df)
Returns
Input_Symbol Symbol Synonyms
0 GAB A1BG A1B|ABG|GAB|HYST2477
1 A2M A2M A2MD|CPAMD5|FWP007|S863-7
2 No match! A2MP1 A2MP
3 No match! NAT1 AAC1|MNAT|NAT-1|NATI
4 No match! NAT2 AAC2|NAT-2|PNAT
5 No match! NATP AACP|NATP1
6 GIG24 SERPINA3 AACT|ACT|GIG24|GIG25
Old solution:
f = lambda x: [i for i in x.split('|') if i in mylist] != []
m1 = df['Symbol'].apply(f)
m2 = df['Synonyms'].apply(f)
df[m1 | m2]
回答2:
IIUIC, use
In [346]: df[df.Synonyms.str.contains('|'.join(mylist))]
Out[346]:
Symbol Synonyms
0 A1BG A1B|ABG|GAB|HYST2477
1 A2M A2MD|CPAMD5|FWP007|S863-7
2 A2MP1 A2MP
6 SERPINA3 AACT|ACT|GIG24|GIG25
回答3:
Check in both columns by str.contains and chain conditions by |
(or), last filter by boolean indexing:
mylist = ['GAB', 'A2M', 'GIG24']
m1 = df.Synonyms.str.contains('|'.join(mylist))
m2 = df.Symbol.str.contains('|'.join(mylist))
df = df[m1 | m2]
Another solution is logical_or.reduce all masks created by list comprehension
:
masks = [df[x].str.contains('|'.join(mylist)) for x in ['Symbol','Synonyms']]
m = np.logical_or.reduce(masks)
Or by apply, then use DataFrame.any for check at least one True
per row:
m = df[['Symbol','Synonyms']].apply(lambda x: x.str.contains('|'.join(mylist))).any(1)
df = df[m]
print (df)
Symbol Synonyms
0 A1BG A1B|ABG|GAB|HYST2477
1 A2M A2MD|CPAMD5|FWP007|S863-7
2 A2MP1 A2MP
6 SERPINA3 AACT|ACT|GIG24|GIG25
来源:https://stackoverflow.com/questions/48865605/select-pandas-rows-with-regex-match