问题
Based on a thorough and accurate response to this question, I am now faced with a new issue based on slightly different data. Given this data frame:
df = pd.DataFrame({
('A', 'a'): [23,3,54,7,32,76],
('B', 'b'): [23,'n/a',54,7,32,76],
('possible','possible'):[100,100,100,100,100,100]
})
df
A B possible
a b possible
0 23 23 100
1 3 n/a 100
2 54 54 100
3 7 n/a 100
4 32 32 100
5 76 76 100
I'd like to subtract 4 from 'possible', per row, for any instance (column) where the value is 'n/a' for that row (and then change all 'n/a' values to 0).
A B possible
a b possible
0 23 23 100
1 3 n/a 96
2 54 54 100
3 7 n/a 96
4 32 32 100
5 76 76 100
Some conditions: It may occur that a column is all floats (though they appear to be integers upon inspection). This was not factored into the original question.
It may also occur that a row contains two instances (columns) of 'n/a' values. This was addressed by the previous solution.
Here is the previous solution:
idx = pd.IndexSlice
df.loc[:, idx['possible', 'possible']] -= (df.loc[:, idx[('A','B'),:]] == 'n/a').sum(axis=1) * 4
df.replace({'n/a':0}, inplace=True)
It works, except for where a column (A or B) contains all floats (seemingly integers). When that's the case, this error occurs:
TypeError: Could not compare ['n/a'] with block values
回答1:
I think you can add casting to string
by astype to condition:
idx = pd.IndexSlice
df.loc[:, idx['possible', 'possible']] -=
(df.loc[:, idx[('A','B'),:]].astype(str) == 'n/a').sum(axis=1) * 4
df.replace({'n/a':0}, inplace=True)
print df
A B possible
a b possible
0 23 23 100
1 3 0 96
2 54 54 100
3 7 0 96
4 32 32 100
5 76 76 100
来源:https://stackoverflow.com/questions/37096398/pandas-multi-index-subtract-from-value-based-on-value-in-other-column-part-2