问题
I'm learning about LZ77 compression, and I saw that when I find a repeated string of bytes, I can use a pointer of the form <distance, length>
, and that the "<", ",", ">" bytes are reserved. So... How do I compress a file that has these bytes, if I cannot compress these byte,s but cannot change it by a different byte (because decoders wouldn't be able to read it). Is there a way? Or decoders only decode is there is a exact <d, l>
string? (if there is, so imagine if by a coencidence, we find these bytes in a file. What would happen?)
Thanks!
回答1:
LZ77 is about referencing strings back in the decompressing buffer by their lengths and distances from the current position. But it is left to you how do you encode these back-references. Many implementations of LZ77 do it in different ways.
But you are right that there must be some way to distinguish "literals" (uncompressed pieces of data meant to be copied "as is" from the input to the output) from "back-references" (which are copied from already uncompressed portion).
One way to do it is reserving some characters as "special" (so called "escape sequences"). You can do it the way you did it, that is, by using <
to mark the start of a back-reference. But then you also need a way to output <
if it is a literal. You can do it, for example, by establishing that when after <
there's another <
, then it means a literal, and you just output one <
. Or, you can establish that if after <
there's immediately >
, with nothing in between, then that's not a back-reference, so you just output <
.
It also wouldn't be the most efficient way to encode those back-references, because it uses several bytes to encode a back-reference, so it will become efficient only for referencing strings longer than those several bytes. For shorter back-references it will inflate the data instead of compressing them, unless you establish that matches shorter than several bytes are being left as is, instead of generating back-references. But again, this means lower compression gains.
If you compress only plain old ASCII texts, you can employ a better encoding scheme, because ASCII uses just 7 out of 8 bits in a byte. So you can use the highest bit to signal a back-reference, and then use the remaining 7 bits as length, and the very next byte (or two) as back-reference's distance. This way you can always tell for sure whether the next byte is a literal ASCII character or a back-reference, by checking its highest bit. If it is 0, just output the character as is. If it is 1, use the following 7 bits as length, and read up the next 2 bytes to use it as distance. This way every back-reference takes 3 bytes, so you can efficiently compress text files with repeating sequences of more than 3 characters long.
But there's a still better way to do this, which gives even more compression: you can replace your characters with bit codes of variable lengths, crafted in such a way that the characters appearing more often would have shortest codes, and those which are rare would have longer codes. To achieve that, these codes have to be so-called "prefix codes", so that no code would be a prefix of some other code. When your codes have this property, you can always distinguish them by reading these bits in sequence until you decode some of them. Then you can be sure that you won't get any other valid item by reading more bits. The next bit always starts another new sequence. To produce such codes, you need to use Huffman trees. You can then join all your bytes and different lengths of references into one such tree and generate distinct bit codes for them, depending on their frequency. When you try to decode them, you just read the bits until you reach the code of some of these elements, and then you know for sure whether it is a code of some literal character or a code for back-reference's length. In the second case, you then read some additional bits for the distance of the back-reference (also encoded with a prefix code). This is what DEFLATE compression scheme does. But this is whole another story, and you will find the details in the RFC supplied by @MarkAdler.
回答2:
If I understand your question correctly, it makes no sense. There are no "reserved bytes" for the uncompressed input of an LZ77 compressor. You need to simply encodes literals and length/distance pairs unambiguously.
来源:https://stackoverflow.com/questions/17140280/lz77-compression-reserved-bytes