问题
I am trying to convert such a df:
df = pd.DataFrame({'A': ['A1', 'A1', 'A1', 'A1', 'A1', 'A1', 'A2', 'A2', 'A2', 'A2', 'A2', 'A2', 'A2'],
'B': ['B1', 'B1', 'B2', 'B2', 'B3', 'B3', 'B4', 'B5', 'B6', 'B7', 'B7', 'B8', 'B8']})
by taking n (here 2) largest indexes (by count of B) to:
My way of doing it:
df = df.groupby(['A', 'B'])['A'].count()
df = df.groupby(level=0).nlargest(2).reset_index(level=0, drop=True)
what gives me (which is close to what I need):
Now, the only methods I know to transform MultiIndex are:
df.reset_index(level=1)
df.unstack()
But they don't give me what I am looking for. Is there any dataframe method that will do it for me or I need to do it around with apply. One way of doing it would be to loop through every pair of: df.index.get_level_values(level=1)
and putting it to new df of 2 columns. But this will break If one index.level=0, will have only one index.level=1
Also: I don't care for order of (nlargest) when the count is the same.
回答1:
Use SeriesGroupBy.value_counts which by default sort with select top 2 index values by head and then DataFrame
contructor:
a = df.groupby('A')['B'].apply(lambda x: x.value_counts().head(2).index.tolist())
print (a)
A
A1 [B1, B3]
A2 [B7, B8]
Name: B, dtype: object
If want use your code:
df = df.groupby(['A', 'B'])['A'].count()
df = df.groupby(level=0).nlargest(2).reset_index(level=0, drop=True)
df = df.rename('C').reset_index().groupby('A')['B'].apply(list)
print (df)
A
A1 [B1, B2]
A2 [B7, B8]
Name: B, dtype: object
df1 = (pd.DataFrame(a.values.tolist(), index=a.index)
.rename(columns=lambda x: x+1)
.add_suffix('_nlargest'))
print (df1)
1_nlargest 2_nlargest
A
A1 B1 B3
A2 B7 B8
回答2:
While @jezrael answer is much faster and easier (I will use it), this is what I developed, when I was working on it:
df = pd.DataFrame({'A': ['A1', 'A1', 'A1', 'A1', 'A1', 'A1', 'A2', 'A2', 'A2', 'A2', 'A2', 'A2', 'A2'],
'B': ['B1', 'B1', 'B2', 'B2', 'B3', 'B3', 'B4', 'B5', 'B6', 'B7', 'B7', 'B8', 'B8']})
df = df.groupby(['A', 'B'])['A'].count()
df = df.groupby(level=0).nlargest(2).reset_index(level=0, drop=True)
df = df.unstack()
df_new = pd.DataFrame(columns=['A', '1_Largest', '2_largest'])
for i, row in enumerate(['A1', 'A2']):
df_new.loc[i, :] = row
df_new.loc[i, '1_Largest'] = df.loc[row].sort_values(ascending=False).index[0]
df_new.loc[i, '2_largest'] = df.loc[row].sort_values(ascending=False).index[1]
df_new.set_index('A')
来源:https://stackoverflow.com/questions/50368090/dataframe-n-largest-indexes-values-from-level-1-to-n-columns