问题
I'm trying to implement a simple ECS for my game engine. I know that my implementation is not strictly ECS, but I'm refactoring my code to be more component-based. So far I have the following classes:
Entity
: it is a container of components, and since I want my entity to have multiple components of the same type, it stores them in a
std::map<ComponentID,std::vector<std::unique_ptr<Component>>>
. Each component has a unique ID (an unsigned int), that I get from a simple template trick I learned on the web:
A function called GetUniqueComponentID:
using ComponentID = unsigned int;
inline ComponentID GetUniqueComponentID()
{
static ComponentID id = 0;
return id++;
}
contains a counter that simply generates incrementing numbers. I call this function from a function template called GetComponentID:
template <typename T>
ComponentID GetComponentID()
{
static ComponentID id = GetUniqueComponentID();
return id;
}
this template instantiates a different function for each component that I add to my entity, so code that needs to retrieve a component can index the map using GetComponentId<Component_type>
, with the concrete component type as the template argument for the function.
The entity class has methods like AddComponent and GetComponent that respectively create a component and add it to the entity, and retrieve a component (if present):
class Entity
{
public:
Entity();
~Entity();
template <typename T, typename... TArgs>
T &AddComponent(TArgs&&... args);
template <typename T>
bool HasComponent();
//template <typename T>
//T &GetComponent();
template <typename T>
std::vector<T*> GetComponents();
bool IsAlive() { return mIsAlive; }
void Destroy() { mIsAlive = false; }
private:
//std::map<ComponentID, std::unique_ptr<Component>> mComponents; // single component per type
std::map<ComponentID, std::vector<std::unique_ptr<Component>>> mComponents; // multiple components per type
bool mIsAlive = true;
};
template <typename T, typename... TArgs>
T &Entity::AddComponent(TArgs&&... args)
{
T *c = new T(std::forward<TArgs>(args)...);
std::unique_ptr<Component> component(c);
component->SetEntity(this);
mComponents[GetComponentID<T>()].push_back(std::move(component));
return *c;
}
template <typename T>
bool Entity::HasComponent() // use bitset (faster)
{
std::map<ComponentID, std::vector<std::unique_ptr<Component>>>::iterator it = mComponents.find(GetComponentID<T>());
if (it != mComponents.end())
return true;
return false;
}
template <typename T>
std::vector<T*> Entity::GetComponents()
{
std::vector<T*> components;
for (std::unique_ptr<Component> &component : mComponents[GetComponentID<T>()])
components.push_back(static_cast<T*>(component.get()));
return components;
}
Since I want to store multiple components of the same type, I store them in a std::map<ComponentID,std::vector<std::unique_ptr<Component>>>
.
Now my question is:
I need to create a component hierarchy for a type of component: I have a ForceGenerator component that is the (abstract) base class for all kinds of concrete ForceGenerators (Springs, Gravity and so on). So I need to create the concrete components, but I need to use them polymorphically through a pointer to the base class: my physics subsystem needs only be concerned with pointers to the base ForceGenerator, calling its Update() method that takes care of updating forces.
I can't use the current approach, since I call AddComponent with a different type each time I create a specific ForceGenerator component, while I need to store them in the same array (mapped to the component ID of the base ForceGenerator).
How could I solve this problem?
回答1:
You could use default template arguments like this:
class Entity
{
template <typename T,typename StoreAs=T, typename... TArgs>
T &Entity::AddComponent(TArgs&&... args);
};
template <typename T,typename StoreAs, typename... TArgs>
T &Entity::AddComponent(TArgs&&... args)
{
T *c = new T(std::forward<TArgs>(args)...);
std::unique_ptr<Component> component(c);
component->SetEntity(this);
mComponents[GetComponentID<StoreAs()].push_back(std::move(component));
return *c;
}
is called like
entity.AddComponent<T>(...)//Will instatiate AddComponent<T,T,...>
entity.AddComponent<T,U>(...)//Will instatiate AddComponent<T,U,...>
You might even go step further and use some SFINAE to only enable this function when the component can be stored as that type: (Might or might not actually improve the error message)
template <typename T,typename StoreAs, typename... TArgs>
std::enable_if_t<std::is_base_of_v<StoreAs,T>,T&> //Return type is `T&`
Entity::AddComponent(TArgs&&... args)
{
T *c = new T(std::forward<TArgs>(args)...);
std::unique_ptr<Component> component(c);
component->SetEntity(this);
mComponents[GetComponentID<StoreAs>()].push_back(std::move(component));
return *c;
}
I assume that Component
is a base class for all components. If you have a finite,known set of components, you can store them in std::variant<List types here>
instead of unique pointers.
EDIT:
Apparently clang complains: "template parameter redefines default argument". Gcc didn't mind, but just to be correct, put the StoreAs
initialization StoreAs=T
only in Entity class, not to the implementation. I edited the source code.
回答2:
NEW PROPOSAL
Looking at the other answer I got an idea, you can inherit from another CRTP base class for define where to store (only when using mapped store).
Example:
//Just for check class
struct StoreAs {};
//Give the store type
template<typename T>
struct StoreAsT : public StoreAs {
using store_as_type = T;
};
//Some components
struct ComponentA { };
struct ComponentC { };
struct ComponentB : public StoreAsT<ComponentC> { };
//Dummy add
template<typename T>
void Add(T&& cmp) {
if constexpr(std::is_base_of_v<StoreAs, T>) {
std::cout << "Store as (remap)" << GetComponentID<typename T::store_as_type>() << std::endl;
} else {
std::cout << "Store as " << GetComponentID<T>() << std::endl;
}
}
//Example add
int main() {
Add(ComponentA {});
Add(ComponentB {});
Add(ComponentC {});
return 0;
}
Output:
Store as 0
Store as (remap)1
Store as 1
OLD PROPOSAL:
As a easy approach but quite verbose and not a generic solution you can expand you ID generation trick:
template <typename T>
ComponentID GetComponentID()
{
static ComponentID id = GetUniqueComponentID();
return id;
}
to
template <typename T>
struct ComponentIDGenerator {
static ComponentID GetComponentID() {
static ComponentID id = GetUniqueComponentID();
return id;
}
};
Now instead of use GetComponentID you need to use ComponenteIDGenerator::GetComponentID() but now you can create specific specializations.
So, you can specialize to remap some ids:
template<>
struct ComponentIDGenerator<SomeForce1> {
static ComponentID GetComponentID() {
return ComponentIDGenerator<NotRemappedForceType>::GetComponentID();
}
};
template<>
struct ComponentIDGenerator<SomeForce2> {
static ComponentID GetComponentID() {
return ComponentIDGenerator<NotRemappedForceType>::GetComponentID();
}
};
Now both (SomeFroce1 and SomeForce2) returns the id of "NotRemappedForceType"
and at the end recover the original function:
template<typename T>
ComponentID GetComponentID() {
return ComponentIDGenerator<T>::GetComponentID();
}
来源:https://stackoverflow.com/questions/55187404/entity-component-system-and-multiple-components-sharing-common-base-type