问题
I want to start a timer and have a function called when it expires.
Googling finds lots of examples, including the example in the manual, all of which use sigaction()
to set a signal handler.
However, @Patryk says in this question that we can just
void cbf(union sigval);
struct sigevent sev;
timer_t timer;
sev.sigev_notify = SIGEV_THREAD;
sev.sigev_notify_function = cbf; //this function will be called when timer expires
sev.sigev_value.sival_ptr = (void*) arg;//this argument will be passed to cbf
timer_create(CLOCK_MONOTONIC, &sev, &timer);
which is shorter, simpler, cleaner, more maintainable ...
What gives? Is this correct? Is it just a wrapper for sigaction()
? Why do the examples explicitly set a signal handler?
Also, if I start a timer either by this method, or by timer_settime
and a signal handler, will cancelling the timer casue the system to remove the association between that timer and the callback, or do I have to do that explicitly?
[Update] You can choose either signals or the method I show in my answer below (or both, but that seems silly). It is a matter of taste. Singals might offer a little more fucntionality, at the cost of complciation.
If all you want to do is start a timer and be notified when it expires, the method in my answer is simplest.
回答1:
It seems that I do not have to use a signal handler and can make the code much simpler, as shown here:
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <time.h>
#include <unistd.h>
static unsigned int pass_value_by_pointer = 42;
void Timer_has_expired(union sigval timer_data)
{
printf("Timer expiration handler function; %d\n", *(int *) timer_data.sival_ptr);
}
int main(void)
{
struct sigevent timer_signal_event;
timer_t timer;
struct itimerspec timer_period;
printf("Create timer\n");
timer_signal_event.sigev_notify = SIGEV_THREAD;
timer_signal_event.sigev_notify_function = Timer_has_expired; // This function will be called when timer expires
// Note that the following is a union. Assign one or the other (preferably by pointer)
//timer_signal_event.sigev_value.sival_int = 38; // This argument will be passed to the function
timer_signal_event.sigev_value.sival_ptr = (void *) &pass_value_by_pointer; // as will this (both in a structure)
timer_signal_event.sigev_notify_attributes = NULL;
timer_create(CLOCK_MONOTONIC, &timer_signal_event, &timer);
printf("Start timer\n");
timer_period.it_value.tv_sec = 1; // 1 second timer
timer_period.it_value.tv_nsec = 0; // no nano-seconds
timer_period.it_interval.tv_sec = 0; // non-repeating timer
timer_period.it_interval.tv_nsec = 0;
timer_settime(timer, 0, &timer_period, NULL);
sleep(2);
printf("----------------------------\n");
printf("Start timer a second time\n");
timer_settime(timer, 0, &timer_period, NULL);
sleep(2);
printf("----------------------------\n");
printf("Start timer a third time\n");
timer_settime(timer, 0, &timer_period, NULL);
printf("Cancel timer\n");
timer_delete(timer);
sleep(2);
printf("The timer expiration handler function should not have been called\n");
return EXIT_SUCCESS;
}
when run, it gives this output:
Create timer
Start timer
Timer expiration handler function; 42
----------------------------
Start timer a second time
Timer expiration handler function; 42
----------------------------
Start timer a third time
Cancel timer
The timer expiration handler function should not have been called
回答2:
Linux has timerfd. https://lwn.net/Articles/251413/ . This will allows a waitable time to be used together with select/poll/epoll. Alternatively you can use the timeout on select/poll/epoll.
回答3:
Michael Kerrisk has a detailed example in his "The Linux Programming Interface" book:
/* ptmr_sigev_thread.c
This program demonstrates the use of threads as the notification mechanism
for expirations of a POSIX timer. Each of the program's command-line
arguments specifies the initial value and interval for a POSIX timer. The
format of these arguments is defined by the function itimerspecFromStr().
The program creates and arms one timer for each command-line argument.
The timer notification method is specified as SIGEV_THREAD, causing the
timer notifications to be delivered via a thread that invokes threadFunc()
as its start function. The threadFunc() function displays information
about the timer expiration, increments a global counter of timer expirations,
and signals a condition variable to indicate that the counter has changed.
In the main thread, a loop waits on the condition variable, and each time
the condition variable is signaled, the main thread prints the value of the
global variable that counts timer expirations.
Kernel support for Linux timers is provided since Linux 2.6. On older
systems, an incomplete user-space implementation of POSIX timers
was provided in glibc.
*/
#include <signal.h>
#include <time.h>
#include <pthread.h>
#include "curr_time.h" /* Declares currTime() */
#include "tlpi_hdr.h"
#include "itimerspec_from_str.h" /* Declares itimerspecFromStr() */
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
static int expireCnt = 0; /* Number of expirations of all timers */
static void /* Thread notification function */
threadFunc(union sigval sv)
{
timer_t *tidptr;
int s;
tidptr = sv.sival_ptr;
printf("[%s] Thread notify\n", currTime("%T"));
printf(" timer ID=%ld\n", (long) *tidptr);
printf(" timer_getoverrun()=%d\n", timer_getoverrun(*tidptr));
/* Increment counter variable shared with main thread and signal
condition variable to notify main thread of the change. */
s = pthread_mutex_lock(&mtx);
if (s != 0)
errExitEN(s, "pthread_mutex_lock");
expireCnt += 1 + timer_getoverrun(*tidptr);
s = pthread_mutex_unlock(&mtx);
if (s != 0)
errExitEN(s, "pthread_mutex_unlock");
s = pthread_cond_signal(&cond);
if (s != 0)
errExitEN(s, "pthread_cond_signal");
}
int
main(int argc, char *argv[])
{
struct sigevent sev;
struct itimerspec ts;
timer_t *tidlist;
int s, j;
if (argc < 2)
usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]]...\n", argv[0]);
tidlist = calloc(argc - 1, sizeof(timer_t));
if (tidlist == NULL)
errExit("malloc");
sev.sigev_notify = SIGEV_THREAD; /* Notify via thread */
sev.sigev_notify_function = threadFunc; /* Thread start function */
sev.sigev_notify_attributes = NULL;
/* Could be pointer to pthread_attr_t structure */
/* Create and start one timer for each command-line argument */
for (j = 0; j < argc - 1; j++) {
itimerspecFromStr(argv[j + 1], &ts);
sev.sigev_value.sival_ptr = &tidlist[j];
/* Passed as argument to threadFunc() */
if (timer_create(CLOCK_REALTIME, &sev, &tidlist[j]) == -1)
errExit("timer_create");
printf("Timer ID: %ld (%s)\n", (long) tidlist[j], argv[j + 1]);
if (timer_settime(tidlist[j], 0, &ts, NULL) == -1)
errExit("timer_settime");
}
/* The main thread waits on a condition variable that is signaled
on each invocation of the thread notification function. We
print a message so that the user can see that this occurred. */
s = pthread_mutex_lock(&mtx);
if (s != 0)
errExitEN(s, "pthread_mutex_lock");
for (;;) {
s = pthread_cond_wait(&cond, &mtx);
if (s != 0)
errExitEN(s, "pthread_cond_wait");
printf("main(): expireCnt = %d\n", expireCnt);
}
}
Taken from online source code.
Also read the Chapter 23 of the book, this code is explained in great detail there.
To test the code above, one would enter
$ ./ptmr_sigev_thread 5:5 10:10
This will set two timers: one with initial expiry of 5 seconds and an interval with 5 seconds, and the other with 10 respectively.
The definitions for helper functions can be found by following the link on the book's source code above.
来源:https://stackoverflow.com/questions/38348707/do-i-have-to-use-a-signal-handler-for-a-posix-timer