Pandas - Group/bins of data per longitude/latitude

陌路散爱 提交于 2019-12-12 07:55:15

问题


I have a bunch of geographical data as below. I would like to group the data by bins of .2 degrees in longitude AND .2 degree in latitude.

While it is trivial to do for either latitude or longitude, what is the most appropriate of doing this for both variables?

|User_ID  |Latitude  |Longitude|Datetime           |u    |v    |
|---------|----------|---------|-------------------|-----|-----|
|222583401|41.4020375|2.1478710|2014-07-06 20:49:20|0.3  | 0.2 |
|287280509|41.3671346|2.0793115|2013-01-30 09:25:47|0.2  | 0.7 |
|329757763|41.5453577|2.1175164|2012-09-25 08:40:59|0.5  | 0.8 |
|189757330|41.5844998|2.5621569|2013-10-01 11:55:20|0.4  | 0.4 |
|624921653|41.5931846|2.3030671|2013-07-09 20:12:20|1.2  | 1.4 |
|414673119|41.5550136|2.0965829|2014-02-24 20:15:30|2.3  | 0.6 |
|414673119|41.5550136|2.0975829|2014-02-24 20:16:30|4.3  | 0.7 |
|414673119|41.5550136|2.0985829|2014-02-24 20:17:30|0.6  | 0.9 |

So far what I have done is created 2 linear spaces:

lonbins = np.linspace(df.Longitude.min(), df.Longitude.max(), 10) 
latbins = np.linspace(df.Latitude.min(), df.Latitude.max(), 10)

Then I can groupBy using:

groups = df.groupby(pd.cut(df.Longitude, lonbins))

I could then obviously iterate over the groups to create a second level. My goal being to do statistical analysis on each of the group and possibly display them on a map it does not look very handy.

bucket = {}
for name, group in groups: 
    print name bucket[name] = group.groupby(pd.cut(group.Latitude, latbins))

For example I would like to do a heatmap which would display the number of rows per latlon box, display distribution of speed in each of the latlon boxes, ...


回答1:


How about this?

step = 0.2
to_bin = lambda x: np.floor(x / step) * step
df["latbin"] = df.Latitude.map(to_bin)
df["lonbin"] = df.Longitude.map(to_bin)
groups = df.groupby(("latbin", "lonbin"))


来源:https://stackoverflow.com/questions/39254704/pandas-group-bins-of-data-per-longitude-latitude

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!