Number of all longest increasing subsequences

可紊 提交于 2019-11-27 04:15:52

问题


I'm practicing algorithms and one of my tasks is to count the number of all longest increasing sub-sequences for given 0 < n <= 10^6 numbers. Solution O(n^2) is not an option.

I have already implemented finding a LIS and its length (LIS Algorithm), but this algorithm switches numbers to the lowest possible. Therefore, it's impossible to determine if sub-sequences with a previous number (the bigger one) would be able to achieve the longest length, otherwise I could just count those switches, I guess.

Any ideas how to get this in about O(nlogn)? I know that it should be solved using dynamic-programming.

I implemented one solution and it works well, but it requires two nested loops (i in 1..n) x (j in 1..i-1).
So it's O(n^2) I think, nevertheless it's too slow.

I tried even to move those numbers from array to a binary tree (because in each i iteration I look for all smaller numbers then number[i] - going through elements i-1..1), but it was even slower.

Example tests:

1 3 2 2 4
result: 3 (1,3,4 | 1,2,4 | 1,2,4)

3 2 1
result: 3 (1 | 2 | 3)

16 5 8 6 1 10 5 2 15 3 2 4 1
result: 3 (5,8,10,15 | 5,6,10,15 | 1,2,3,4)

回答1:


Finding the number of all longest increasing subsequences

Full Java code of improved LIS algorithm, which discovers not only the length of longest increasing subsequence, but number of subsequences of such length, is below. I prefer to use generics to allow not only integers, but any comparable types.

@Test
public void testLisNumberAndLength() {

    List<Integer> input = Arrays.asList(16, 5, 8, 6, 1, 10, 5, 2, 15, 3, 2, 4, 1);
    int[] result = lisNumberAndlength(input);
    System.out.println(String.format(
            "This sequence has %s longest increasing subsequenses of length %s", 
            result[0], result[1]
            ));
}


/**
 * Body of improved LIS algorithm
 */
public <T extends Comparable<T>> int[] lisNumberAndLength(List<T> input) {

    if (input.size() == 0) 
        return new int[] {0, 0};

    List<List<Sub<T>>> subs = new ArrayList<>();
    List<Sub<T>> tails = new ArrayList<>();

    for (T e : input) {
        int pos = search(tails, new Sub<>(e, 0), false);      // row for a new sub to be placed
        int sum = 1;
        if (pos > 0) {
            List<Sub<T>> pRow = subs.get(pos - 1);            // previous row
            int index = search(pRow, new Sub<T>(e, 0), true); // index of most left element that <= e
            if (pRow.get(index).value.compareTo(e) < 0) {
                index--;
            } 
            sum = pRow.get(pRow.size() - 1).sum;              // sum of tail element in previous row
            if (index >= 0) {
                sum -= pRow.get(index).sum;
            }
        }

        if (pos >= subs.size()) {                             // add a new row
            List<Sub<T>> row = new ArrayList<>();
            row.add(new Sub<>(e, sum));
            subs.add(row);
            tails.add(new Sub<>(e, 0));

        } else {                                              // add sub to existing row
            List<Sub<T>> row = subs.get(pos);
            Sub<T> tail = row.get(row.size() - 1); 
            if (tail.value.equals(e)) {
                tail.sum += sum;
            } else {
                row.add(new Sub<>(e, tail.sum + sum));
                tails.set(pos, new Sub<>(e, 0));
            }
        }
    }

    List<Sub<T>> lastRow = subs.get(subs.size() - 1);
    Sub<T> last = lastRow.get(lastRow.size() - 1);
    return new int[]{last.sum, subs.size()};
}



/**
 * Implementation of binary search in a sorted list
 */
public <T> int search(List<? extends Comparable<T>> a, T v, boolean reversed) {

    if (a.size() == 0)
        return 0;

    int sign = reversed ? -1 : 1;
    int right = a.size() - 1;

    Comparable<T> vRight = a.get(right);
    if (vRight.compareTo(v) * sign < 0)
        return right + 1;

    int left = 0;
    int pos = 0;
    Comparable<T> vPos;
    Comparable<T> vLeft = a.get(left);

    for(;;) {
        if (right - left <= 1) {
            if (vRight.compareTo(v) * sign >= 0 && vLeft.compareTo(v) * sign < 0) 
                return right;
            else 
                return left;
        }
        pos = (left + right) >>> 1;
        vPos = a.get(pos);
        if (vPos.equals(v)) {
            return pos;
        } else if (vPos.compareTo(v) * sign > 0) {
            right = pos;
            vRight = vPos;
        } else {
            left = pos;
            vLeft = vPos;
        }
    } 
}



/**
 * Class for 'sub' pairs
 */
public static class Sub<T extends Comparable<T>> implements Comparable<Sub<T>> {

    T value;
    int sum;

    public Sub(T value, int sum) { 
        this.value = value; 
        this.sum = sum; 
    }

    @Override public String toString() {
        return String.format("(%s, %s)", value, sum); 
    }

    @Override public int compareTo(Sub<T> another) { 
        return this.value.compareTo(another.value); 
    }
}

Explanation

As my explanation seems to be long, I will call initial sequence "seq" and any its subsequence "sub". So the task is to calculate count of longest increasing subs that can be obtained from the seq.

As I mentioned before, idea is to keep counts of all possible longest subs obtained on previous steps. So let's create a numbered list of rows, where number of each line equals the length of subs stored in this row. And let's store subs as pairs of numbers (v, c), where "v" is "value" of ending element, "c" is "count" of subs of given length that end by "v". For example:

1: (16, 1) // that means that so far we have 1 sub of length 1 which ends by 16.

We will build such list step by step, taking elements from initial sequence by their order. On every step we will try to add this element to the longest sub that it can be added to and record changes.

Building a list

Let's build the list using sequence from your example, since it has all possible options:

 16 5 8 6 1 10 5 2 15 3 2 4 1

First, take element 16. Our list is empty so far, so we just put one pair in it:

1: (16, 1) <= one sub that ends by 16

Next is 5. It cannot be added to a sub that ends by 16, so it will create new sub with length of 1. We create a pair (5, 1) and put it into line 1:

1: (16, 1)(5, 1)

Element 8 is coming next. It cannot create the sub [16, 8] of length 2, but can create the sub [5, 8]. So, this is where algorithm is coming. First, we iterate the list rows upside down, looking at the "values" of last pair. If our element is greater than values of all last elements in all rows, then we can add it to existing sub(s), increasing its length by one. So value 8 will create new row of the list, because it is greater than values all last elements existing in the list so far (i. e. > 5):

1: (16, 1)(5, 1) 
2: (8, ?)   <=== need to resolve how many longest subs ending by 8 can be obtained

Element 8 can continue 5, but cannot continue 16. So we need to search through previous row, starting from its end, calculating the sum of "counts" in pairs which "value" is less than 8:

(16, 1)(5, 1)^  // sum = 0
(16, 1)^(5, 1)  // sum = 1
^(16, 1)(5, 1)  // value 16 >= 8: stop. count = sum = 1, so write 1 in pair next to 8

1: (16, 1)(5, 1)
2: (8, 1)  <=== so far we have 1 sub of length 2 which ends by 8.

Why don't we store value 8 into subs of length 1 (first line)? Because we need subs of maximum possible length, and 8 can continue some previous subs. So every next number greater than 8 will also continue such sub and there is no need to keep 8 as sub of length less that it can be.

Next. 6. Searching upside down by last "values" in rows:

1: (16, 1)(5, 1)  <=== 5 < 6, go next
2: (8, 1)

1: (16, 1)(5, 1)
2: (8, 1 )  <=== 8 >= 6, so 6 should be put here

Found the room for 6, need to calculate a count:

take previous line
(16, 1)(5, 1)^  // sum = 0
(16, 1)^(5, 1)  // 5 < 6: sum = 1
^(16, 1)(5, 1)  // 16 >= 6: stop, write count = sum = 1

1: (16, 1)(5, 1)
2: (8, 1)(6, 1) 

After processing 1:

1: (16, 1)(5, 1)(1, 1) <===
2: (8, 1)(6, 1)

After processing 10:

1: (16, 1)(5, 1)(1, 1)
2: (8, 1)(6, 1)
3: (10, 2) <=== count is 2 because both "values" 8 and 6 from previous row are less than 10, so we summarized their "counts": 1 + 1

After processing 5:

1: (16, 1)(5, 1)(1, 1)
2: (8, 1)(6, 1)(5, 1) <===
3: (10, 2)

After processing 2:

1: (16, 1)(5, 1)(1, 1)
2: (8, 1)(6, 1)(5, 1)(2, 1) <===
3: (10, 2)

After processing 15:

1: (16, 1)(5, 1)(1, 1)
2: (8, 1)(6, 1)(5, 1)(2, 1)
3: (10, 2)
4: (15, 2) <===

After processing 3:

1: (16, 1)(5, 1)(1, 1)
2: (8, 1)(6, 1)(5, 1)(2, 1)
3: (10, 2)(3, 1) <===
4: (15, 2)  

After processing 2:

1: (16, 1)(5, 1)(1, 1)
2: (8, 1)(6, 1)(5, 1)(2, 2) <===
3: (10, 2)(3, 1) 
4: (15, 2)  

If when searching rows by last element we find equal element, we calculate its "count" again based on previous row, and add to existing "count".

After processing 4:

1: (16, 1)(5, 1)(1, 1)
2: (8, 1)(6, 1)(5, 1)(2, 2)  
3: (10, 2)(3, 1) 
4: (15, 2)(4, 1) <===

After processing 1:

1: (16, 1)(5, 1)(1, 2) <===
2: (8, 1)(6, 1)(5, 1)(2, 2)  
3: (10, 2)(3, 1) 
4: (15, 2)(4, 1)  

So what do we have after processing all initial sequence? Looking at the last row, we see that we have 3 longest subs, each consist of 4 elements: 2 end by 15 and 1 ends by 4.

What about complexity?

On every iteration, when taking next element from initial sequence, we make 2 loops: first when iterating rows to find room for next element, and second when summarizing counts in previous row. So for every element we make maximum to n iterations (worst cases: if initial seq consists of elements in increasing order, we will get a list of n rows with 1 pair in every row; if seq is sorted in descending order, we will obtain list of 1 row with n elements). By the way, O(n2) complexity is not what we want.

First, this is obvious, that in every intermediate state rows are sorted by increasing order of their last "value". So instead of brute loop, binary searching can be performed, which complexity is O(log n).

Second, we don't need to summarize "counts" of subs by looping through row elements every time. We can summarize them in process, when new pair is added to the row, like:

1: (16, 1)(5, 2) <=== instead of 1, put 1 + "count" of previous element in the row

So second number will show not count of longest subs that can be obtained with given value at the end, but summary count of all longest subs that end by any element that is greater or equal to "value" from the pair.

Thus, "counts" will be replaced by "sums". And instead of iterating elements in previous row, we just perform binary search (it is possible because pairs in any row are always ordered by their "values") and take "sum" for new pair as "sum" of last element in previous row minus "sum" from element left to found position in previous row plus "sum" of previous element in the current row.

So when processing 4:

1: (16, 1)(5, 2)(1, 3)
2: (8, 1)(6, 2)(5, 3)(2, 5) 
3: (10, 2)(3, 3) 
4: (15, 2) <=== room for (4, ?)

search in row 3 by "values" < 4:
3: (10, 2)^(3, 3) 

4 will be paired with (3-2+2): ("sum" from the last pair of previous row) - ("sum" from pair left to found position in previous row) + ("sum" from previous pair in current row):

4: (15, 2)(4, 3)

In this case, final count of all longest subs is "sum" from the last pair of the last row of the list, i. e. 3, not 3 + 2.

So, performing binary search to both row search and sum search, we will come with O(n*log n) complexity.

What about memory consumed, after processing all array we obtain maximum n pairs, so memory consumption in case of dynamic arrays will be O(n). Besides, when using dynamic arrays or collections, some additional time is needed to allocate and resize them, but most operations are made in O(1) time because we don't make any kind of sorting and rearrangement during process. So complexity estimation seems to be final.




回答2:


Sasha Salauyou's answer is great but I am not clear why

sum -= pRow.get(index).sum;

here is my code based on the same idea

import java.math.BigDecimal;
import java.util.*;

class lisCount {
  static BigDecimal lisCount(int[] a) {
    class Container {
      Integer    v;
      BigDecimal count;

      Container(Integer v) {
        this.v = v;
      }
    }
    List<List<Container>> lisIdxSeq = new ArrayList<List<Container>>();
    int lisLen, lastIdx;
    List<Container> lisSeqL;
    Container lisEle;
    BigDecimal count;
    int pre;
    for (int i = 0; i < a.length; i++){
      pre = -1;
      count = new BigDecimal(1);
      lisLen = lisIdxSeq.size();
      lastIdx = lisLen - 1;
      lisEle = new Container(i);
      if(lisLen == 0 || a[i] > a[lisIdxSeq.get(lastIdx).get(0).v]){
        // lis len increased
        lisSeqL = new ArrayList<Container>();
        lisSeqL.add(lisEle);
        lisIdxSeq.add(lisSeqL);
        pre = lastIdx;
      }else{
        int h = lastIdx;
        int l = 0;

        while(l < h){
          int m = (l + h) / 2;
          if(a[lisIdxSeq.get(m).get(0).v] < a[i]) l = m + 1;
          else h = m;
        }

        List<Container> lisSeqC = lisIdxSeq.get(l);
        if(a[i] <= a[lisSeqC.get(0).v]){
          int hi = lisSeqC.size() - 1;
          int lo = 0;
          while(hi < lo){
            int mi = (hi + lo) / 2;
            if(a[lisSeqC.get(mi).v] < a[i]) lo = mi + 1;
            else hi = mi;
          }
          lisSeqC.add(lo, lisEle);
          pre = l - 1;
        }
      }
      if(pre >= 0){
        Iterator<Container> it = lisIdxSeq.get(pre).iterator();
        count = new BigDecimal(0);
        while(it.hasNext()){
          Container nt = it.next();
          if(a[nt.v] < a[i]){
            count = count.add(nt.count);
          }else break;
        }
      }
      lisEle.count = count;
    }

    BigDecimal rst = new BigDecimal(0);
    Iterator<Container> i = lisIdxSeq.get(lisIdxSeq.size() - 1).iterator();
    while(i.hasNext()){
      rst = rst.add(i.next().count);
    }
    return rst;
  }

  public static void main(String[] args) {
    System.out.println(lisCount(new int[] { 1, 3, 2, 2, 4 }));
    System.out.println(lisCount(new int[] { 3, 2, 1 }));
    System.out.println(lisCount(new int[] { 16, 5, 8, 6, 1, 10, 5, 2, 15, 3, 2, 4, 1 }));
  }
}



回答3:


Patience sorting is also O(N*logN), but way shorter and simpler than the methods based on binary search:

static int[] input = {4, 5, 2, 8, 9, 3, 6, 2, 7, 8, 6, 6, 7, 7, 3, 6};

/**
 * Every time a value is tested it either adds to the length of LIS (by calling decs.add() with it), or reduces the remaining smaller cards that must be found before LIS consists of smaller cards. This way all inputs/cards contribute in one way or another (except if they're equal to the biggest number in the sequence; if want't to include in sequence, replace 'card <= decs.get(decIndex)' with 'card < decs.get(decIndex)'. If they're bigger than all decs, they add to the length of LIS (which is something we want), while if they're smaller than a dec, they replace it. We want this, because the smaller the biggest dec is, the smaller input we need before we can add onto LIS.
 *
 * If we run into a decreasing sequence the input from this sequence will replace each other (because they'll always replace the leftmost dec). Thus this algorithm won't wrongfully register e.g. {2, 1, 3} as {2, 3}, but rather {2} -> {1} -> {1, 3}.
 *
 * WARNING: This can only be used to find length, not actual sequence, seeing how parts of the sequence will be replaced by smaller numbers trying to make their sequence dominate
 *
 * Due to bigger decs being added to the end/right of 'decs' and the leftmost decs always being the first to be replaced with smaller decs, the further a dec is to the right (the bigger it's index), the bigger it must be. Thus, by always replacing the leftmost decs, we don't run the risk of replacing the biggest number in a sequence (the number which determines if more cards can be added to that sequence) before a sequence with the same length but smaller numbers (thus currently equally good, due to length, and potentially better, due to less needed to increase length) has been found.
 */
static void patienceFindLISLength() {
    ArrayList<Integer> decs = new ArrayList<>();
    inputLoop: for (Integer card : input) {
        for (int decIndex = 0; decIndex < decs.size(); decIndex++) {
            if (card <= decs.get(decIndex)) {
                decs.set(decIndex, card);
                continue inputLoop;
            }
        }
        decs.add(card);
    }
    System.out.println(decs.size());
}



回答4:


Cpp implementation of above logic:

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define pob pop_back
#define pll pair<ll, ll>
#define pii pair<int, int>
#define ll long long
#define ull unsigned long long
#define fori(a,b) for(i=a;i<b;i++)
#define forj(a,b) for(j=a;j<b;j++)
#define fork(a,b) for(k=a;k<b;k++)
#define forl(a,b) for(l=a;l<b;l++)
#define forir(a,b) for(i=a;i>=b;i--)
#define forjr(a,b) for(j=a;j>=b;j--)
#define mod 1000000007
#define boost std::ios::sync_with_stdio(false)

struct comp_pair_int_rev
{
    bool operator()(const pair<int,int> &a, const int & b)
    {
        return (a.first > b);
    }
    bool operator()(const int & a,const pair<int,int> &b)
    {
        return (a > b.first);
    }
};

struct comp_pair_int
{
    bool operator()(const pair<int,int> &a, const int & b)
    {
        return (a.first < b);
    }
    bool operator()(const int & a,const pair<int,int> &b)
    {
        return (a < b.first);
    }
};

int main()
{
    int n,i,mx=0,p,q,r,t;
    cin>>n;

    int a[n];
    vector<vector<pii > > v(100005);
    vector<pii > v1(100005);

    fori(0,n)
    cin>>a[i];

    v[1].pb({a[0], 1} );
    v1[1]= {a[0], 1};

    mx=1;
    fori(1,n)
    {
        if(a[i]<=v1[1].first)
        {
            r=v1[1].second;

            if(v1[1].first==a[i])
                v[1].pob();

            v1[1]= {a[i], r+1};
            v[1].pb({a[i], r+1});
        }
        else if(a[i]>v1[mx].first)
        {
            q=upper_bound(v[mx].begin(), v[mx].end(), a[i], comp_pair_int_rev() )-v[mx].begin();
            if(q==0)
            {
                r=v1[mx].second;
            }
            else
            {
                r=v1[mx].second-v[mx][q-1].second;
            }

            v1[++mx]= {a[i], r};
            v[mx].pb({a[i], r});
        }
        else if(a[i]==v1[mx].first)
        {
            q=upper_bound(v[mx-1].begin(), v[mx-1].end(), a[i], comp_pair_int_rev() )-v[mx-1].begin();
            if(q==0)
            {
                r=v1[mx-1].second;
            }
            else
            {
                r=v1[mx-1].second-v[mx-1][q-1].second;
            }
            p=v1[mx].second;
            v1[mx]= {a[i], p+r};

            v[mx].pob();
            v[mx].pb({a[i], p+r});


        }
        else
        {
            p=lower_bound(v1.begin()+1, v1.begin()+mx+1, a[i], comp_pair_int() )-v1.begin();
            t=v1[p].second;

            if(v1[p].first==a[i])
            {

                v[p].pob();
            }

            q=upper_bound(v[p-1].begin(), v[p-1].end(), a[i], comp_pair_int_rev() )-v[p-1].begin();
            if(q==0)
            {
                r=v1[p-1].second;
            }
            else
            {
                r=v1[p-1].second-v[p-1][q-1].second;
            }

            v1[p]= {a[i], t+r};
            v[p].pb({a[i], t+r});

        }


    }

    cout<<v1[mx].second;

    return 0;
}



回答5:


Although I completely agree with Alex this can be done very easily using Segment tree. Here is the logic to find the length of LIS using segment tree in NlogN. https://www.quora.com/What-is-the-approach-to-find-the-length-of-the-strictly-increasing-longest-subsequence Here is an approach that finds no of LIS but takes N^2 complexity. https://codeforces.com/blog/entry/48677

We use segment tree(as used here) to optimize approach given in this. Here is the logic:

first sort the array in ascending order(also keep the original order), initialise segment tree with zeroes, segment tree should query two things(use pair for this) for a given range: a. max of first. b. sum of second corresponding to max-first. iterate through sorted array. let j be the original index of current element, then we query (0 - j-1) and update the j-th element(if result of query is 0,0 then we update it with (1,1)).

Here is my code in c++:

#include<bits/stdc++.h>
#define tr(container, it) for(typeof(container.begin()) it = container.begin(); it != container.end(); it++)
#define ll          long long
#define pb          push_back
#define endl        '\n'
#define pii         pair<ll int,ll int>
#define vi          vector<ll int>
#define all(a)      (a).begin(),(a).end()
#define F           first
#define S           second
#define sz(x)       (ll int)x.size()
#define hell        1000000007
#define rep(i,a,b)  for(ll int i=a;i<b;i++)
#define lbnd        lower_bound
#define ubnd        upper_bound
#define bs          binary_search
#define mp          make_pair
using namespace std;

#define N  100005

ll max(ll a , ll b)

{
    if( a > b) return a ;
    else return
         b;
}
ll n,l,r;
vector< pii > seg(4*N);

pii query(ll cur,ll st,ll end,ll l,ll r)
{
    if(l<=st&&r>=end)
    return seg[cur];
    if(r<st||l>end)
    return mp(0,0);                           /*  2-change here  */
    ll mid=(st+end)>>1;
    pii ans1=query(2*cur,st,mid,l,r);
    pii ans2=query(2*cur+1,mid+1,end,l,r);
    if(ans1.F>ans2.F)
        return ans1;
    if(ans2.F>ans1.F)
        return ans2;

    return make_pair(ans1.F,ans2.S+ans1.S);                 /*  3-change here  */
}
void update(ll cur,ll st,ll end,ll pos,ll upd1, ll upd2)
{
    if(st==end)
    {
        // a[pos]=upd;                  /*  4-change here  */
        seg[cur].F=upd1;    
        seg[cur].S=upd2;            /*  5-change here  */
        return;
    }
    ll mid=(st+end)>>1;
    if(st<=pos&&pos<=mid)
        update(2*cur,st,mid,pos,upd1,upd2);
    else
        update(2*cur+1,mid+1,end,pos,upd1,upd2);
    seg[cur].F=max(seg[2*cur].F,seg[2*cur+1].F);


    if(seg[2*cur].F==seg[2*cur+1].F)
        seg[cur].S = seg[2*cur].S+seg[2*cur+1].S;
    else
    {
        if(seg[2*cur].F>seg[2*cur+1].F)
            seg[cur].S = seg[2*cur].S;
        else
            seg[cur].S = seg[2*cur+1].S;
        /*  6-change here  */
    }
}

int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int TESTS=1;
//  cin>>TESTS;
    while(TESTS--)
    {
        int n ;
        cin >> n;
        vector< pii > arr(n);
        rep(i,0,n)
        {
            cin >> arr[i].F;
            arr[i].S = -i;
        }

        sort(all(arr));
        update(1,0,n-1,-arr[0].S,1,1);
        rep(i,1,n)
        {
            pii x = query(1,0,n-1,-1,-arr[i].S - 1 );
            update(1,0,n-1,-arr[i].S,x.F+1,max(x.S,1));

        }

        cout<<seg[1].S;//answer



    }
    return 0;
}


来源:https://stackoverflow.com/questions/22923646/number-of-all-longest-increasing-subsequences

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!