问题
Following is the code that I wrote using nltk and Python.
import nltk
import random
from nltk.corpus import movie_reviews
#from sklearn.naive_bayes import GaussianNB
documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
random.shuffle(documents)
#print(documents[1:3])
all_words= []
for w in movie_reviews.words():
all_words.append(w.lower())
all_words = nltk.FreqDist(all_words)
#print(all_words.most_common(15))
#print(all_words["great"])
word_features = list(all_words.keys())[:3000]
def find_features(document):
words = set(document)
features = {}
for w in word_features:
features[w] = {w in words}
return features
#print((find_features(movie_reviews.words('neg/cv000_29416.txt'))))
featuresets = [(find_features(rev), category) for (rev, category) in documents]
training_set = featuresets[:1900]
testing_set = featuresets[1900:]
classifier = nltk.NaiveBayesClassifier.train(training_set)
print("Naive Bayes Algo Accuracy percent:", (nltk.classify.accuracy(classifier, testing_set))*100)
classifier.show_most_informative_features(15)
# clf = GaussianNB()
# clf.fit(training_set)
I am getting this error
traceback (most recent call last): File "naive_bayes_application.py", line 37, in classifier = nltk.NaiveBayesClassifier.train(training_set) File "C:\Users\jshub\Anaconda3\lib\site-packages\nltk\classify\naivebayes.py", line 198, in train feature_freqdist[label, fname][fval] += 1 TypeError: unhashable type: 'set'
Please help.
回答1:
Just in def find_features while constructing the features dictionary pass value in normal brackets.
example:
for w in word_features:
features[w] = (w in words)
来源:https://stackoverflow.com/questions/45814086/naive-base-classifier-of-nltk-giving-unhashable-type-error