Pandas Multi-Index - Can't convert non-uniquely indexed DataFrame to Panel

醉酒当歌 提交于 2019-12-12 03:25:19

问题


Given a time series data, I'm trying to use panel OLS with fixed effects in Python. I found this way to do it:

Fixed effect in Pandas or Statsmodels

My input data looks like this (I will called it df):

    Name    Permits_13  Score_13    Permits_14  Score_14    Permits_15  Score_15
0   P.S. 015 ROBERTO CLEMENTE   12.0    284 22  279 32  283
1   P.S. 019 ASHER LEVY 18.0    296 51  301 55  308
2   P.S. 020 ANNA SILVER    9.0 294 9   290 10  293
3   P.S. 034 FRANKLIN D. ROOSEVELT  3.0 294 4   292 1   296
4   P.S. 064 ROBERT SIMON   3.0 287 15  288 17  291
5   P.S. 110 FLORENCE NIGHTINGALE   0.0 313 3   306 4   308
6   P.S. 134 HENRIETTA SZOLD    4.0 290 12  292 17  288
7   P.S. 137 JOHN L. BERNSTEIN  4.0 276 12  273 17  274
8   P.S. 140 NATHAN STRAUS  13.0    282 37  284 59  284
9   P.S. 142 AMALIA CASTRO  7.0 290 15  285 25  284
10  P.S. 184M SHUANG WEN    5.0 327 12  327 9   327

So first I have to transform it to Multi-index (_13, _14, _15 represent data from 2013, 2014 and 2015, in that order):

df = df.dropna()
df = df.drop_duplicates()

rng = pandas.date_range(start=pandas.datetime(2013, 1, 1), periods=3, freq='A')
index = pandas.MultiIndex.from_product([rng, df['Name']], names=['date', 'id'])
d1 = numpy.array(df.ix[:, ['Score_13', 'Permits_13']])
d2 = numpy.array(df.ix[:, ['Score_14', 'Permits_14']])
d3 = numpy.array(df.ix[:, ['Score_15', 'Permits_15']])
data = numpy.concatenate((d1, d2, d3), axis=0)
s = pandas.DataFrame(data, index=index, columns=['y', 'x']) 
s = s.drop_duplicates()

Which results in something like this:

        y   x
date    id      
2013-12-31  P.S. 015 ROBERTO CLEMENTE   284 12
P.S. 019 ASHER LEVY 296 18
P.S. 020 ANNA SILVER    294 9
P.S. 034 FRANKLIN D. ROOSEVELT  294 3
P.S. 064 ROBERT SIMON   287 3
P.S. 110 FLORENCE NIGHTINGALE   313 0
P.S. 134 HENRIETTA SZOLD    290 4
P.S. 137 JOHN L. BERNSTEIN  276 4
P.S. 140 NATHAN STRAUS  282 13
P.S. 142 AMALIA CASTRO  290 7
P.S. 184M SHUANG WEN    327 5
P.S. 188 THE ISLAND SCHOOL  279 4
HENRY STREET SCHOOL FOR INTERNATIONAL STUDIES   255 4
TECHNOLOGY, ARTS, AND SCIENCES STUDIO   282 18
THE EAST VILLAGE COMMUNITY SCHOOL   306 35
UNIVERSITY NEIGHBORHOOD MIDDLE SCHOOL   277 4
THE CHILDREN'S WORKSHOP SCHOOL  302 35
NEIGHBORHOOD SCHOOL 299 15
EARTH SCHOOL    305 3
SCHOOL FOR GLOBAL LEADERS   286 15
TOMPKINS SQUARE MIDDLE SCHOOL   306 3
P.S. 001 ALFRED E. SMITH    303 20
P.S. 002 MEYER LONDON   306 8
P.S. 003 CHARRETTE SCHOOL   325 62
P.S. 006 LILLIE D. BLAKE    333 89
P.S. 011 WILLIAM T. HARRIS  320 30
P.S. 033 CHELSEA PREP   313 5
P.S. 040 AUGUSTUS SAINT-GAUDENS 326 23
P.S. 041 GREENWICH VILLAGE  326 25
P.S. 042 BENJAMIN ALTMAN    314 30
... ... ... ...
2015-12-31  P.S. 054 CHARLES W. LENG    309 2
P.S. 055 HENRY M. BOEHM 311 3
P.S. 56 THE LOUIS DESARIO SCHOOL    323 4
P.S. 057 HUBERT H. HUMPHREY 287 2
SPACE SHUTTLE COLUMBIA SCHOOL   307 0
P.S. 060 ALICE AUSTEN   303 1
I.S. 061 WILLIAM A MORRIS   291 2
MARSH AVENUE SCHOOL FOR EXPEDITIONARY LEARNING  316 0
P.S. 069 DANIEL D. TOMPKINS 307 2
I.S. 072 ROCCO LAURIE   308 1
I.S. 075 FRANK D. PAULO 318 9
THE MICHAEL J. PETRIDES SCHOOL  310 0
STATEN ISLAND SCHOOL OF CIVIC LEADERSHIP    309 0
P.S. 075 MAYDA CORTIELLA    282 19
P.S. 086 THE IRVINGTON  286 38
P.S. 106 EDWARD EVERETT HALE    280 27
P.S. 116 ELIZABETH L FARRELL    291 3
P.S. 123 SUYDAM 287 14
P.S. 145 ANDREW JACKSON 285 4
P.S. 151 LYNDON B. JOHNSON  271 27
J.H.S. 162 THE WILLOUGHBY   283 22
P.S. 274 KOSCIUSKO  282 2
J.H.S. 291 ROLAND HAYES 279 13
P.S. 299 THOMAS WARREN FIELD    288 5
I.S. 347 SCHOOL OF HUMANITIES   284 45
I.S. 349 MATH, SCIENCE & TECH.  285 45
P.S. 376    301 9
P.S. 377 ALEJANDRINA B. DE GAUTIER  277 3
P.S. /I.S. 384 FRANCES E. CARTER    291 4
ALL CITY LEADERSHIP SECONDARY SCHOOL    325 18

However, when I try to call:

reg  = PanelOLS(y=s['y'],x=s[['x']],time_effects=True)

I get an error:

ValueError: Can't convert non-uniquely indexed DataFrame to Panel

That's my first time using Pandas, this may be a simple question but I don't know what's the problem. As far as I got I have a multi-index object as required.

I don't get why I have duplicates (I put a lot of drop_duplicates() try to get rid of any duplicated data -- which I don't think is the answer, though). If I have data for the same school for three years, shouldn't I have duplicate data somehow (looking just at the row Name, for example)?

EDIT

dfis 935 rows × 7 columns, after getting rid of NaNs rows. So I expected s to be 2805 rows × 2 columns, which is exactly what I have.

If i run this:

s = s.reset_index().groupby(s.index.names).first()
reg  = PanelOLS(y=s['y'],x=s[['x']],time_effects=True)

I get another error:

ValueError: operands could not be broadcast together with shapes (2763,) (3,)

Thank you.


回答1:


Using the provided pickle file, I ran the regression and it worked fine.

-------------------------Summary of Regression Analysis-------------------------

Formula: Y ~ <x>

Number of Observations:         2763
Number of Degrees of Freedom:   4

R-squared:         0.0268
Adj R-squared:     0.0257

Rmse:             16.4732

F-stat (1, 2759):    25.3204, p-value:     0.0000

Degrees of Freedom: model 3, resid 2759

-----------------------Summary of Estimated Coefficients------------------------
      Variable       Coef    Std Err     t-stat    p-value    CI 2.5%   CI 97.5%
--------------------------------------------------------------------------------
             x     0.1666     0.0191       8.72     0.0000     0.1292     0.2041
---------------------------------End of Summary---------------------------------

I ran this in Jupyter Notebook



来源:https://stackoverflow.com/questions/37260035/pandas-multi-index-cant-convert-non-uniquely-indexed-dataframe-to-panel

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!