问题
I looked at the docs and it says the following join types are supported:
Type of join to perform. Default inner. Must be one of: inner, cross, outer, full, full_outer, left, left_outer, right, right_outer, left_semi, left_anti.
I looked at the StackOverflow answer on SQL joins and top couple of answers do not mention some of the joins from above e.g. left_semi
and left_anti
. What do they mean in Spark?
回答1:
Here is a simple illustrative experiment:
import org.apache.spark.sql._
object SparkSandbox extends App {
private[this] implicit val spark = SparkSession.builder().master("local[*]").getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("ERROR")
val left = Seq((1, "A1"), (2, "A2"), (3, "A3"), (4, "A4")).toDF("id", "value")
val right = Seq((3, "A3"), (4, "A4"), (4, "A4_1"), (5, "A5"), (6, "A6")).toDF("id", "value")
println("LEFT")
left.orderBy("id").show()
println("RIGHT")
right.orderBy("id").show()
val joinTypes = Seq("inner", "outer", "full", "full_outer", "left", "left_outer", "right", "right_outer", "left_semi", "left_anti")
joinTypes foreach { joinType =>
println(s"${joinType.toUpperCase()} JOIN")
left.join(right = right, usingColumns = Seq("id"), joinType = joinType).orderBy("id").show()
}
}
Output
LEFT
+---+-----+
| id|value|
+---+-----+
| 1| A1|
| 2| A2|
| 3| A3|
| 4| A4|
+---+-----+
RIGHT
+---+-----+
| id|value|
+---+-----+
| 3| A3|
| 4| A4|
| 4| A4_1|
| 5| A5|
| 6| A6|
+---+-----+
INNER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 3| A3| A3|
| 4| A4| A4_1|
| 4| A4| A4|
+---+-----+-----+
OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 1| A1| null|
| 2| A2| null|
| 3| A3| A3|
| 4| A4| A4|
| 4| A4| A4_1|
| 5| null| A5|
| 6| null| A6|
+---+-----+-----+
FULL JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 1| A1| null|
| 2| A2| null|
| 3| A3| A3|
| 4| A4| A4|
| 4| A4| A4_1|
| 5| null| A5|
| 6| null| A6|
+---+-----+-----+
FULL_OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 1| A1| null|
| 2| A2| null|
| 3| A3| A3|
| 4| A4| A4|
| 4| A4| A4_1|
| 5| null| A5|
| 6| null| A6|
+---+-----+-----+
LEFT JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 1| A1| null|
| 2| A2| null|
| 3| A3| A3|
| 4| A4| A4_1|
| 4| A4| A4|
+---+-----+-----+
LEFT_OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 1| A1| null|
| 2| A2| null|
| 3| A3| A3|
| 4| A4| A4_1|
| 4| A4| A4|
+---+-----+-----+
RIGHT JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 3| A3| A3|
| 4| A4| A4_1|
| 4| A4| A4|
| 5| null| A5|
| 6| null| A6|
+---+-----+-----+
RIGHT_OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
| 3| A3| A3|
| 4| A4| A4|
| 4| A4| A4_1|
| 5| null| A5|
| 6| null| A6|
+---+-----+-----+
LEFT_SEMI JOIN
+---+-----+
| id|value|
+---+-----+
| 3| A3|
| 4| A4|
+---+-----+
LEFT_ANTI JOIN
+---+-----+
| id|value|
+---+-----+
| 1| A1|
| 2| A2|
+---+-----+
回答2:
Loved Pathikrit's example. Here is a possible translation in Java using Spark v2 and dataframes, including cross-join.
package net.jgp.books.sparkInAction.ch12.lab940AllJoins;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
/**
* All joins in a single app, inspired by
* https://stackoverflow.com/questions/45990633/what-are-the-various-join-types-in-spark.
*
* Used in Spark in Action 2e, http://jgp.net/sia
*
* @author jgp
*/
public class AllJoinsApp {
/**
* main() is your entry point to the application.
*
* @param args
*/
public static void main(String[] args) {
AllJoinsApp app = new AllJoinsApp();
app.start();
}
/**
* The processing code.
*/
private void start() {
// Creates a session on a local master
SparkSession spark = SparkSession.builder()
.appName("Processing of invoices")
.master("local")
.getOrCreate();
StructType schema = DataTypes.createStructType(new StructField[] {
DataTypes.createStructField(
"id",
DataTypes.IntegerType,
false),
DataTypes.createStructField(
"value",
DataTypes.StringType,
false) });
List<Row> rows = new ArrayList<Row>();
rows.add(RowFactory.create(1, "A1"));
rows.add(RowFactory.create(2, "A2"));
rows.add(RowFactory.create(3, "A3"));
rows.add(RowFactory.create(4, "A4"));
Dataset<Row> dfLeft = spark.createDataFrame(rows, schema);
dfLeft.show();
rows = new ArrayList<Row>();
rows.add(RowFactory.create(3, "A3"));
rows.add(RowFactory.create(4, "A4"));
rows.add(RowFactory.create(4, "A4_1"));
rows.add(RowFactory.create(5, "A5"));
rows.add(RowFactory.create(6, "A6"));
Dataset<Row> dfRight = spark.createDataFrame(rows, schema);
dfRight.show();
String[] joinTypes = new String[] {
"inner", // v2.0.0. default
"cross", // v2.2.0
"outer", // v2.0.0
"full", // v2.1.1
"full_outer", // v2.1.1
"left", // v2.1.1
"left_outer", // v2.0.0
"right", // v2.1.1
"right_outer", // v2.0.0
"left_semi", // v2.0.0, was leftsemi before v2.1.1
"left_anti" // v2.1.1
};
for (String joinType : joinTypes) {
System.out.println(joinType.toUpperCase() + " JOIN");
Dataset<Row> df = dfLeft.join(
dfRight,
dfLeft.col("id").equalTo(dfRight.col("id")),
joinType);
df.orderBy(dfLeft.col("id")).show();
}
}
}
I'll put this example in the Spark in Action, 2e's chapter 12 repository.
回答3:
Spark data frame support following types of joins between two dataframes.
Please find the list of joins and joining string with respect to join types along with scala syntax.
We can use following joining values used for specify the join type in Scala- Spark code.
***Mathod:*** Leftdataframe.join(Rightdataframe, join_conditions, joinStringName)
Join Name : Join String name in scala -Spark code
1. inner : 'inner'
2. cross: 'cross'
3. outer: 'outer'
4. full: 'full'
5. full outer: 'fullouter'
6. left : 'left'
7. left outer : 'leftouter'
8. right : 'right'
9. right outer : 'rightouter'
10. left semi: 'leftsemi'
11. left anti: 'leftanti'
example: 1. Left Semi join:
Leftdataframe.join(Rightdataframe, join_conditions, "leftsemi");
2. inner Join Example:
Leftdataframe.join(Rightdataframe, join_conditions, "inner");
Its tested and working well.
回答4:
Left Semi returns rows where the join key is found in both tables, but it only includes the fields from the left table.
Left Anti returns rows where the join key is found only in the left table.
Good descriptions of the different join types: https://www.cloudera.com/documentation/enterprise/latest/topics/impala_joins.html
来源:https://stackoverflow.com/questions/45990633/what-are-the-various-join-types-in-spark