问题
I am a beginner in programming and just learned new concepts and started writing code for matrix multiplication but I got confused in pointers and others so I am uploading my code here in seek of guidelines.
#include <stdio.h>
#include <stdlib.h>
int **matrixMultiply(int A[][8], int B[][8], int row);
int main() {
int **A = allocate_matrix(A, 8, 8);
int **B = allocate_matrix(B, 8, 8);
int i, j;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
A[i][j] = i + j;
A[i][j] = i + j;
}
}
int **C = allocate_matrix(C, 8, 8);
C = matrixMultiply(A, B, 8);
return 0;
}
int **matrixMultiply(int A[][8], int B[][8], int row) {
int **C = allocate_matrix(C, row, row);
if (row == 1) {
C[1][1] = A[1][1] * B[1][1];
} else {
int a11[row/2][row/2], a12[row/2][row/2], a21[row/2][row/2], a22[row/2][row/2];
int b11[row/2][row/2], b12[row/2][row/2], b21[row/2][row/2], b22[row/2][row/2];
int **c11 = allocate_matrix(c11, row/2, row/2);
int **c12 = allocate_matrix(c12, row/2, row/2);
int **c21 = allocate_matrix(c21, row/2, row/2);
int **c22 = allocate_matrix(c22, row/2, row/2);
int i, j;
for (i = 0; i < row/2; i++) {
for (j = 0; j < row/2; j++) {
a11[i][j] = A[i][j];
a12[i][j] = A[i][j + (row/2)];
a21[i][j] = A[i + (row/2)][j];
a22[i][j] = A[i + (row/2)][j + (row/2)];
b11[i][j] = B[i][j];
b12[i][j] = B[i][j + (row/2)];
b21[i][j] = B[i + (row/2)][j];
b22[i][j] = B[i + (row/2)][j + (row/2)];
c11[i][j] = C[i][j];
c12[i][j] = C[i][j + (row/2)];
c21[i][j] = C[i + (row/2)][j];
c22[i][j] = C[i + (row/2)][j + (row/2)];
}
}
c11 = addmatrix(matrixMultiply(a11, b11, row/2),
matrixMultiply(a12, b21, row/2), c11, row/2);
c12 = addmatrix(matrixMultiply(a11, b12, row/2),
matrixMultiply(a22, b22, row/2), c12, row/2);
c21 = addmatrix(matrixMultiply(a21, b11, row/2),
matrixMultiply(a22, b21, row/2), c21, row/2);
c22 = addmatrix(matrixMultiply(a21, b12, row/2),
matrixMultiply(a22, b22, row/2), c22, row/2);
// missing code???
return C;
}
}
int **allocate_matrix(int **matrix, int row, int column) {
matrix = (int **)malloc(row * sizeof(int*));
int i;
for (i = 0; i < row; i++) {
matrix[row] = (int *)malloc(row * sizeof(int));
}
return matrix;
}
void deallocate_matrix(int **matrix, int row) {
int i;
for (i = 0; i < row; i++) {
free(matrix[row]);
}
free(matrix);
}
int **addMatrix(int **a, int **b, int **c, int row) {
int i, j;
for (i = 0; i < row; i++) {
for (j = 0; j < row; j++) {
c[i][j] = a[i][j] + b[i][j];
}
}
return c;
}
回答1:
I reformatted your code so I could analyze it. Indent consistently with 4 spaces, insert spaces around binary operators, after ,
and ;
separators and between keywords and (
, this improves readability a lot.
There seems to be missing code in the matrixMultiply
function: you allocate the resulting matrix C
but you use it as an input to initialize the intermediary matrices c11
, c21
, c21
and c22
, and never actually store anything into C
except for the trivial 1x1 case.
The matrix multiplication code seems broken beyond this, the function takes 2 arguments of type int A[][8], int B[][8]
, but you recursively call it with local arrays a11
to b22
defined as int a11[row/2][row/2]
. These types are different, I do not know how the code even compiles.
In the matrix allocation code, you allocate rows with in incorrect size row
instead of column
. You should use calloc
for this so the matrix is initialized to 0
, plus you should not pass the initial argument at all:
int **allocate_matrix(int row, int column) {
int **matrix = malloc(row * sizeof(*matrix));
for (int i = 0; i < row; i++) {
matrix[i] = calloc(column, sizeof(*matrix[row]));
}
return matrix;
}
There is also a mistake for the second submatrix multiplication, it should be
c12 = addmatrix(matrixMultiply(a11, b12, row/2),
matrixMultiply(a12, b22, row/2), c12, row/2);
Furthermore, you never free the temporary matrices used for intermediary results. Unlike java, C does not have a garbage collector, you are responsible for releasing blocks of memory when you no longer need them, before they become inaccessible.
Here is a corrected version, with extra functions to print the matrix data and verify the matrix multiplication correctness. I added timings: the recursive method is much slower than the direct method, mostly because of all the extra allocation/deallocation for the intermediary results.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
int **matrix_allocate(int row, int column) {
int **matrix = malloc(row * sizeof(*matrix));
for (int i = 0; i < row; i++) {
matrix[i] = calloc(column, sizeof(*matrix[i]));
}
return matrix;
}
void matrix_free(int **matrix, int row) {
for (int i = 0; i < row; i++) {
free(matrix[i]);
}
free(matrix);
}
void matrix_print(const char *str, int **a, int row) {
int min, max, w = 0, n1, n2, nw;
min = max = a[0][0];
for (int i = 0; i < row; i++) {
for (int j = 0; j < row; j++) {
if (min > a[i][j])
min = a[i][j];
if (max < a[i][j])
max = a[i][j];
}
}
n1 = snprintf(NULL, 0, "%d", min);
n2 = snprintf(NULL, 0, "%d", max);
nw = n1 > n2 ? n1 : n2;
for (int i = 0; i < row; i++) {
if (i == 0)
w = printf("%s = ", str);
else
printf("%*s", w, "");
for (int j = 0; j < row; j++) {
printf(" %*d", nw, a[i][j]);
}
printf("\n");
}
fflush(stdout);
}
int **matrix_add(int **a, int **b, int row, int deallocate) {
int **c = matrix_allocate(row, row);
for (int i = 0; i < row; i++) {
for (int j = 0; j < row; j++) {
c[i][j] = a[i][j] + b[i][j];
}
}
if (deallocate & 1) matrix_free(a, row);
if (deallocate & 2) matrix_free(b, row);
return c;
}
int **matrix_multiply(int **A, int **B, int row, int deallocate) {
int **C = matrix_allocate(row, row);
if (row == 1) {
C[0][0] = A[0][0] * B[0][0];
} else {
int row2 = row / 2;
int **a11 = matrix_allocate(row2, row2);
int **a12 = matrix_allocate(row2, row2);
int **a21 = matrix_allocate(row2, row2);
int **a22 = matrix_allocate(row2, row2);
int **b11 = matrix_allocate(row2, row2);
int **b12 = matrix_allocate(row2, row2);
int **b21 = matrix_allocate(row2, row2);
int **b22 = matrix_allocate(row2, row2);
for (int i = 0; i < row2; i++) {
for (int j = 0; j < row2; j++) {
a11[i][j] = A[i][j];
a12[i][j] = A[i][j + row2];
a21[i][j] = A[i + row2][j];
a22[i][j] = A[i + row2][j + row2];
b11[i][j] = B[i][j];
b12[i][j] = B[i][j + row2];
b21[i][j] = B[i + row2][j];
b22[i][j] = B[i + row2][j + row2];
}
}
int **c11 = matrix_add(matrix_multiply(a11, b11, row2, 0),
matrix_multiply(a12, b21, row2, 0), row2, 1+2);
int **c12 = matrix_add(matrix_multiply(a11, b12, row2, 1),
matrix_multiply(a12, b22, row2, 1), row2, 1+2);
int **c21 = matrix_add(matrix_multiply(a21, b11, row2, 2),
matrix_multiply(a22, b21, row2, 2), row2, 1+2);
int **c22 = matrix_add(matrix_multiply(a21, b12, row2, 1+2),
matrix_multiply(a22, b22, row2, 1+2), row2, 1+2);
for (int i = 0; i < row2; i++) {
for (int j = 0; j < row2; j++) {
C[i][j] = c11[i][j];
C[i][j + row2] = c12[i][j];
C[i + row2][j] = c21[i][j];
C[i + row2][j + row2] = c22[i][j];
}
}
matrix_free(c11, row2);
matrix_free(c12, row2);
matrix_free(c21, row2);
matrix_free(c22, row2);
}
if (deallocate & 1) matrix_free(A, row);
if (deallocate & 2) matrix_free(B, row);
return C;
}
int **matrix_multiply_direct(int **A, int **B, int row, int deallocate) {
int **C = matrix_allocate(row, row);
for (int i = 0; i < row; i++) {
for (int j = 0; j < row; j++) {
int x = 0;
for (int k = 0; k < row; k++) {
x += A[i][k] * B[k][j];
}
C[i][j] = x;
}
}
if (deallocate & 1) matrix_free(A, row);
if (deallocate & 2) matrix_free(B, row);
return C;
}
int main(int argc, char **argv) {
int n = argc < 2 ? 8 : atoi(argv[1]);
int **A = matrix_allocate(n, n);
int **B = matrix_allocate(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = i + j;
B[i][j] = i + j;
}
}
matrix_print("A", A, n);
matrix_print("B", B, n);
if ((n & (n - 1)) == 0) {
/* recursive method can be applied only to powers of 2 */
clock_t ticks = -clock();
int **C = matrix_multiply(A, B, n, 0);
ticks += clock();
matrix_print("C = A * B", C, n);
printf("%d ticks\n", ticks);
matrix_free(C, n);
}
clock_t ticks = -clock();
int **D = matrix_multiply_direct(A, B, n, 1+2);
ticks += clock();
matrix_print("D = A * B", D, n);
printf("%d ticks\n", ticks);
matrix_free(D, n);
return 0;
}
来源:https://stackoverflow.com/questions/34994405/matrix-multiplication-using-divide-and-conquer-approach