问题
I am building a repository of clean, non-hard coded (= not using the data frame column names inside) function templates that enable creating 4 types of functions: 1 new column from 1 existing, many new columns from 1 existing, 1 new column from many and finally many-to-many.
The first 3 look like this and work:
In [97]:
data={'level1':[20,19,20,21,25,29,30,31,30,29,31],
'level2': [10,10,20,20,20,10,10,20,20,10,10]}
index= pd.date_range('12/1/2014', periods=11)
frame=DataFrame(data, index=index)
In [98]:
def nonhardcoded_1to1(x):
y=x+2
return y
frame['test1to1']=frame['level1'].map(nonhardcoded_1to1)#works
def nonhardcoded_2to1(x,y):
z=x+y
return z
frame['test2to1']=frame[['level1','level2']].apply(lambda s: nonhardcoded_2to1(*s), axis=1)#works
def nonhardcoded_1to2(x):
y=x+12
z=x-12
return y, z
frame['test1to2a'], frame['test1to2b'] = zip(*frame['level1'].map(nonhardcoded_1to2))#works
Now, for the many-to-many function I get errors. I am trying to stitch it together from the above '2to1' and '1-2' functions but they don't work together:
def nonhardcoded_2to2(x,y):
z1=x+y
z2=x-y
return z1, z2
frame['test2to2a'], frame['test2to2b']=zip(*frame[['level1','level2']].apply(lambda s: nonhardcoded_2to2(*s), axis=1))
ValueError: too many values to unpack
So I tried to dig into the function call:
test=frame[['level1','level2']].apply(lambda s: nonhardcoded_2to2(*s), axis=1)
which returned this, so in theory this at least looks usable:
Out[104]:
level1 level2
2014-12-01 30 10
2014-12-02 29 9
2014-12-03 40 0
2014-12-04 41 1
2014-12-05 45 5
2014-12-06 39 19
2014-12-07 40 20
2014-12-08 51 11
2014-12-09 50 10
2014-12-10 39 19
2014-12-11 41 21
Then I tried:
test=zip(*frame[['level1','level2']].apply(lambda s: nonhardcoded_2to2(*s), axis=1))
test
which returned a tuple sequence. For some reason it seems to take the headers of the result and turns it into pairs. Not sure why
[('l', 'l'), ('e', 'e'), ('v', 'v'), ('e', 'e'), ('l', 'l'), ('1', '2')]
How should I create and call this function so it works?
来源:https://stackoverflow.com/questions/28398345/how-to-create-multiple-columns-from-multiple-columns-in-a-pandas-data-frame