问题
0 19 1 19 2 19 3 19
How can i change this above csv data in python to -
0 19
1 19
2 19
3 19
now i need help with reshaping my dataset which looks like this -
0 100 1 100 2 100 3 100 4 100 5 100
6 200 7 200 8 200 9 200 0 200 1 200
.....
I want to reshape my dataset in the following format -
0 100
1 100
2 100
3 100
4 100
5 100
..
6 200
7 200
8 200
9 200
0 200
1 200
...
回答1:
from io import StringIO
txt = """0 19 1 19 2 19 3 19
"""
df = pd.read_csv(StringIO(txt),header=None,sep=' ')
df=df.dropna(1)
pd.DataFrame(df.T[0].values.reshape(df.shape[1]//2,2))
Out[77]:
0 1
0 0 19
1 1 19
2 2 19
3 3 19
回答2:
You don't really need pandas. You can do this with np.loadtxt
followed by a reshape
.
import io
# replace this with your filename
buf = io.StringIO('''0 19 1 19 2 19 3 19''') # buf = 'file.txt'
arr = np.loadtxt(buf).reshape(-1, 2)
arr
array([[ 0., 19.],
[ 1., 19.],
[ 2., 19.],
[ 3., 19.]])
Note that if you have a different delimiter (example, comma), then you can specify it by passing a delimiter
argument like so: np.loadtxt(buf, delimiter=',')
.
Now, save to CSV using savetxt
-
np.savetxt('file.csv', arr, delimiter=',')
Later, when reading your CSV using pandas
, use -
df = pd.read_csv(index_col=[0], header=None, names=['A', 'B'])
来源:https://stackoverflow.com/questions/48179906/reshaping-data-in-csv-to-multiple-columns