Why doesn't emplace_back() use uniform initialization?

强颜欢笑 提交于 2019-11-27 03:27:12
Potatoswatter

Great minds think alike ;v) . I submitted a defect report and suggested a change to the standard on this very topic.

http://cplusplus.github.com/LWG/lwg-active.html#2089

Also, Luc Danton helped me understand the difficulty: Direct vs uniform initialization in std::allocator.

When the EmplaceConstructible (23.2.1 [container.requirements.general]/13) requirement is used to initialize an object, direct-initialization occurs. Initializing an aggregate or using a std::initializer_list constructor with emplace requires naming the initialized type and moving a temporary. This is a result of std::allocator::construct using direct-initialization, not list-initialization (sometimes called "uniform initialization") syntax.

Altering std::allocator::construct to use list-initialization would, among other things, give preference to std::initializer_list constructor overloads, breaking valid code in an unintuitive and unfixable way — there would be no way for emplace_back to access a constructor preempted by std::initializer_list without essentially reimplementing push_back.

std::vector<std::vector<int>> v;
v.emplace_back(3, 4); // v[0] == {4, 4, 4}, not {3, 4} as in list-initialization

The proposed compromise is to use SFINAE with std::is_constructible, which tests whether direct-initialization is well formed. If is_constructible is false, then an alternative std::allocator::construct overload is chosen which uses list-initialization. Since list-initialization always falls back on direct-initialization, the user will see diagnostic messages as if list-initialization (uniform-initialization) were always being used, because the direct-initialization overload cannot fail.

I can see two corner cases that expose gaps in this scheme. One occurs when arguments intended for std::initializer_list satisfy a constructor, such as trying to emplace-insert a value of {3, 4} in the above example. The workaround is to explicitly specify the std::initializer_list type, as in v.emplace_back(std::initializer_list(3, 4)). Since this matches the semantics as if std::initializer_list were deduced, there seems to be no real problem here.

The other case is when arguments intended for aggregate initialization satisfy a constructor. Since aggregates cannot have user-defined constructors, this requires that the first nonstatic data member of the aggregate be implicitly convertible from the aggregate type, and that the initializer list have one element. The workaround is to supply an initializer for the second member. It remains impossible to in-place construct an aggregate with only one nonstatic data member by conversion from a type convertible to the aggregate's own type. This seems like an acceptably small hole.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!