pySpark: java.lang.UnsupportedOperationException: Unimplemented type: StringType

泄露秘密 提交于 2019-12-11 09:05:47

问题


While reading inconsistent schema written group of parquet files, we have issue on schema merging. On switching to manually specifying schema i get following error. Any pointer will be helpful.

java.lang.UnsupportedOperationException: Unimplemented type: StringType at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readDoubleBatch(VectorizedColumnReader.java:389) at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBatch(VectorizedColumnReader.java:195) at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:230) at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:137)

source_location = "{}/{}/{}/dt={}/{}/*_{}_{}.parquet".format(source_initial,
                                                                       bucket,
                                                                       source_prefix,
                                                                       date,
                                                                       source_file_pattern,
                                                                       date,
                                                                       source_file_pattern)
schema = StructType([
        StructField("Unnamed", StringType(), True),StructField("nanos", LongType(), True),StructField("book", LongType(), True),
        StructField("X_o", LongType(), True),StructField("Y_o", LongType(), True),StructField("Z_o", LongType(), True),
        StructField("Total", DoubleType(), True),StructField("P_v", DoubleType(), True),StructField("R_v", DoubleType(), True),
        StructField("S_v", DoubleType(), True),StructField("message_type", StringType(), True),StructField("symbol", StringType(), True),
        StructField("date", StringType(), True),StructField("__index_level_0__", StringType(), True)])

print("Querying data from source location {}".format(source_location))
df_raw = spark.read.format('parquet').load(source_location, schema = schema, inferSchema = False,mergeSchema="true")
df_raw = df_raw.filter(df_raw.nanos.between(open_nano,close_nano))
df_raw = df_raw.withColumn("timeInWindow_nano",(fun.ceil(df_raw.nanos/(window_nano))).cast("int"))
df_core = df_raw.groupBy("date","symbol","timeInWindow_nano").agg(fun.sum("Total").alias("Total"),
                                                     fun.sum("P_v").alias("P_v"),
                                                     fun.sum("R_v").alias("R_v"),
                                                     fun.sum("S_v").alias("S_v"))

df_core = df_core.withColumn("P_v",fun.when(df_core.Total < 0,0).otherwise(df_core.P_v))
df_core = df_core.withColumn("R_v",fun.when(df_core.Total < 0,0).otherwise(df_core.R_v))
df_core = df_core.withColumn("S_v",fun.when(df_core.Total < 0,0).otherwise(df_core.S_v))
df_core = df_core.withColumn("P_pct",df_core.P_v*df_core.Total)
df_core = df_core.withColumn("R_pct",df_core.R_v*df_core.Total)
df_core = df_core.withColumn("S_pct",df_core.S_v*df_core.Total)

回答1:


You cannot read parquet files in one load if schemas are not compatible. My advice would be to separate this to two loads and then union dataframes when you have them compatible. See example code:

schema1_df = spark.read.parquet('path/to/files/with/string/field.parquet')
schema2_df = spark.read.parquet('path/to/files/with/double/field.parquet')
df = schema2_df.unionAll(schema1.df.withColumn('invalid_col', schema2_df.invalid_col.cast('double')))


来源:https://stackoverflow.com/questions/46242983/pyspark-java-lang-unsupportedoperationexception-unimplemented-type-stringtype

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!