问题
For convolution theorem F(x.y) = F(x)*F(y)
However after implement it on python
x = np.array([0,0,0,0,1, 2, 3, 4, 0 ,0,0,0])
y = np.array([0,0,0,0,-3, 5, -4, 0, 0, 0,0,0])
xy = x*y
inverse_fft_xy = np.fft.ifft(np.convolve(np.fft.fft(x),np.fft.fft(y)))
Will yield
xy
array([ 0, 0, 0, 0, -3, 10, -12, 0, 0, 0, 0, 0])
inverse_fft_xy
array([ 0.00000000e+00, -8.70383905e-01, 1.65925305e-02,
-8.90888514e-01, 7.07822398e-02, -8.80447879e-01,
1.19687210e-01, 3.09247006e+00, -9.54481834e+00,
-5.81203213e+00, 2.15726342e+01, -1.47366137e+01,
-1.03012447e+01, 2.76823117e+00, -1.42560168e+00,
4.98000293e-01, -1.18537317e+00, 2.02675981e-01,
-9.98770784e-01, 7.43392335e-02, -9.11516399e-01,
1.67799168e-02, -8.74501632e-01])
and it is the same for matlab
I know that there should be zeros padded to avoid linear convolution. Also, the other way of theorem F(x*y) = F(x).F(y) can be done. I just want to know why it cannot be done this way.
回答1:
The time-domain multiplication is actually in terms of a circular convolution in the frequency domain, as given on wikipedia:
Following @Ami tavory's trick to compute the circular convolution, you could implement this using:
Xf = np.fft.fft(x)
Yf = np.fft.fft(y)
N = Xf.size # or Yf.size since they must have the same size
conv = np.convolve(Xf, np.concatenate((Yf,Yf)))
conv = conv[N:2*N]
inverse_fft_xy = np.fft.ifft(conv) / N
such that
x = np.array([1, 2, 3, 4])
y = np.array([-3, 5, -4, 0])
(without any more zero padding than is necessary to have both arrays the same size) would yield the expected:
xy
array([ -3, 10, -12, 0 ])
inverse_fft_xy
array([ -3.+0.j, 10.+0.j, -12.+0.j, 0.+0.j])
来源:https://stackoverflow.com/questions/42840195/convolution-of-two-fft-function