相同:
标准差(StandardDeviation),在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
标准差是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。
方差与我们要处理的数据的量纲是不一致的,虽然能很好的描述数据与均值的偏离程度,但是处理结果是不符合我们的直观思维的。
举个例子:一个班级里有60个学生,平均成绩是70分,标准差是9,方差是81,成绩服从正态分布,那么我们通过方差不能直观的确定班级学生与均值到底偏离了多少分,通过标准差我们就很直观的得到学生成绩分布在[61,79]范围的概率为0.6826,即约等于下图中的34.2%*2
来源:https://blog.csdn.net/qq_35240226/article/details/99291331