mlab.griddata bug?

眉间皱痕 提交于 2019-12-11 02:20:06

问题


I'm using mlab.griddata to interpolate some data when I encountered a strange and what looks like floating point precision bug. This is calling sequence:

nvals = matplotlib.mlab.griddata(lon_old.ravel(),
                                 lat_old.ravel(),               
                                 ivals.ravel(),             
                                 lon_new,                      
                                 lat_new,interp='linear').T
lat_old = array([ 19.62606908,  18.50457985,  17.38309053,  16.26160115,
    15.14011169,  14.01862218,  12.8971326 ,  11.77564298,
    10.65415331,   9.53266359,   8.41117384,   7.28968406,
     6.16819425,   5.04670442,   3.92521457,   2.8037247 ,
     1.68223483,   0.56074494,  -0.56074494,  -1.68223483,
    -2.8037247 ,  19.62606908,  18.50457985,  17.38309053,
    16.26160115,  15.14011169,  14.01862218,  12.8971326 ,
    11.77564298,  10.65415331,   9.53266359,   8.41117384,
     7.28968406,   6.16819425,   5.04670442,   3.92521457,
     2.8037247 ,   1.68223483,   0.56074494,  -0.56074494,
    -1.68223483,  -2.8037247 ,  19.62606908,  18.50457985,
    17.38309053,  16.26160115,  15.14011169,  14.01862218,
    12.8971326 ,  11.77564298,  10.65415331,   9.53266359,
     8.41117384,   7.28968406,   6.16819425,   5.04670442,
     3.92521457,   2.8037247 ,   1.68223483,   0.56074494,
    -0.56074494,  -1.68223483,  -2.8037247 ,  19.62606908,
    18.50457985,  17.38309053,  16.26160115,  15.14011169,
    14.01862218,  12.8971326 ,  11.77564298,  10.65415331,
     9.53266359,   8.41117384,   7.28968406,   6.16819425,
     5.04670442,   3.92521457,   2.8037247 ,   1.68223483,
     0.56074494,  -0.56074494,  -1.68223483,  -2.8037247 ,
    19.62606908,  18.50457985,  17.38309053,  16.26160115,
    15.14011169,  14.01862218,  12.8971326 ,  11.77564298,
    10.65415331,   9.53266359,   8.41117384,   7.28968406,
     6.16819425,   5.04670442,   3.92521457,   2.8037247 ,
     1.68223483,   0.56074494,  -0.56074494,  -1.68223483,
    -2.8037247 ,  19.62606908,  18.50457985,  17.38309053,
    16.26160115,  15.14011169,  14.01862218,  12.8971326 ,
    11.77564298,  10.65415331,   9.53266359,   8.41117384,
     7.28968406,   6.16819425,   5.04670442,   3.92521457,
     2.8037247 ,   1.68223483,   0.56074494,  -0.56074494,
    -1.68223483,  -2.8037247 ,  19.62606908,  18.50457985,
    17.38309053,  16.26160115,  15.14011169,  14.01862218,
    12.8971326 ,  11.77564298,  10.65415331,   9.53266359,
     8.41117384,   7.28968406,   6.16819425,   5.04670442,
     3.92521457,   2.8037247 ,   1.68223483,   0.56074494,
    -0.56074494,  -1.68223483,  -2.8037247 ,  19.62606908,
    18.50457985,  17.38309053,  16.26160115,  15.14011169,
    14.01862218,  12.8971326 ,  11.77564298,  10.65415331,
     9.53266359,   8.41117384,   7.28968406,   6.16819425,
     5.04670442,   3.92521457,   2.8037247 ,   1.68223483,
     0.56074494,  -0.56074494,  -1.68223483,  -2.8037247 ,
    19.62606908,  18.50457985,  17.38309053,  16.26160115,
    15.14011169,  14.01862218,  12.8971326 ,  11.77564298,
    10.65415331,   9.53266359,   8.41117384,   7.28968406,
     6.16819425,   5.04670442,   3.92521457,   2.8037247 ,
     1.68223483,   0.56074494,  -0.56074494,  -1.68223483,
    -2.8037247 ,  19.62606908,  18.50457985,  17.38309053,
    16.26160115,  15.14011169,  14.01862218,  12.8971326 ,
    11.77564298,  10.65415331,   9.53266359,   8.41117384,
     7.28968406,   6.16819425,   5.04670442,   3.92521457,
     2.8037247 ,   1.68223483,   0.56074494,  -0.56074494,
    -1.68223483,  -2.8037247 ,  19.62606908,  18.50457985,
    17.38309053,  16.26160115,  15.14011169,  14.01862218,
    12.8971326 ,  11.77564298,  10.65415331,   9.53266359,
     8.41117384,   7.28968406,   6.16819425,   5.04670442,
     3.92521457,   2.8037247 ,   1.68223483,   0.56074494,
    -0.56074494,  -1.68223483,  -2.8037247 ,  19.62606908,
    18.50457985,  17.38309053,  16.26160115,  15.14011169,
    14.01862218,  12.8971326 ,  11.77564298,  10.65415331,
     9.53266359,   8.41117384,   7.28968406,   6.16819425,
     5.04670442,   3.92521457,   2.8037247 ,   1.68223483,
     0.56074494,  -0.56074494,  -1.68223483,  -2.8037247 ,
    19.62606908,  18.50457985,  17.38309053,  16.26160115,
    15.14011169,  14.01862218,  12.8971326 ,  11.77564298,
    10.65415331,   9.53266359,   8.41117384,   7.28968406,
     6.16819425,   5.04670442,   3.92521457,   2.8037247 ,
     1.68223483,   0.56074494,  -0.56074494,  -1.68223483,
    -2.8037247 ,  19.62606908,  18.50457985,  17.38309053,
    16.26160115,  15.14011169,  14.01862218,  12.8971326 ,
    11.77564298,  10.65415331,   9.53266359,   8.41117384,
     7.28968406,   6.16819425,   5.04670442,   3.92521457,
     2.8037247 ,   1.68223483,   0.56074494,  -0.56074494,
    -1.68223483,  -2.8037247 ,  19.62606908,  18.50457985,
    17.38309053,  16.26160115,  15.14011169,  14.01862218,
    12.8971326 ,  11.77564298,  10.65415331,   9.53266359,
     8.41117384,   7.28968406,   6.16819425,   5.04670442,
     3.92521457,   2.8037247 ,   1.68223483,   0.56074494,
    -0.56074494,  -1.68223483,  -2.8037247 ,  19.62606908,
    18.50457985,  17.38309053,  16.26160115,  15.14011169,
    14.01862218,  12.8971326 ,  11.77564298,  10.65415331,
     9.53266359,   8.41117384,   7.28968406,   6.16819425,
     5.04670442,   3.92521457,   2.8037247 ,   1.68223483,
     0.56074494,  -0.56074494,  -1.68223483,  -2.8037247 ,
    19.62606908,  18.50457985,  17.38309053,  16.26160115,
    15.14011169,  14.01862218,  12.8971326 ,  11.77564298,
    10.65415331,   9.53266359,   8.41117384,   7.28968406,
     6.16819425,   5.04670442,   3.92521457,   2.8037247 ,
     1.68223483,   0.56074494,  -0.56074494,  -1.68223483,
    -2.8037247 ,  19.62606908,  18.50457985,  17.38309053,
    16.26160115,  15.14011169,  14.01862218,  12.8971326 ,
    11.77564298,  10.65415331,   9.53266359,   8.41117384,
     7.28968406,   6.16819425,   5.04670442,   3.92521457,
     2.8037247 ,   1.68223483,   0.56074494,  -0.56074494,
    -1.68223483,  -2.8037247 ,  19.62606908,  18.50457985,
    17.38309053,  16.26160115,  15.14011169,  14.01862218,
    12.8971326 ,  11.77564298,  10.65415331,   9.53266359,
     8.41117384,   7.28968406,   6.16819425,   5.04670442,
     3.92521457,   2.8037247 ,   1.68223483,   0.56074494,
    -0.56074494,  -1.68223483,  -2.8037247 ,  19.62606908,
    18.50457985,  17.38309053,  16.26160115,  15.14011169,
    14.01862218,  12.8971326 ,  11.77564298,  10.65415331,
     9.53266359,   8.41117384,   7.28968406,   6.16819425,
     5.04670442,   3.92521457,   2.8037247 ,   1.68223483,
     0.56074494,  -0.56074494,  -1.68223483,  -2.8037247 ,
    19.62606908,  18.50457985,  17.38309053,  16.26160115,
    15.14011169,  14.01862218,  12.8971326 ,  11.77564298,
    10.65415331,   9.53266359,   8.41117384,   7.28968406,
     6.16819425,   5.04670442,   3.92521457,   2.8037247 ,
     1.68223483,   0.56074494,  -0.56074494,  -1.68223483,  -2.8037247 ])

lon_old = array([ 228.375,  228.375,  228.375,  228.375,  228.375,  228.375,
    228.375,  228.375,  228.375,  228.375,  228.375,  228.375,
    228.375,  228.375,  228.375,  228.375,  228.375,  228.375,
    228.375,  228.375,  228.375,  229.5  ,  229.5  ,  229.5  ,
    229.5  ,  229.5  ,  229.5  ,  229.5  ,  229.5  ,  229.5  ,
    229.5  ,  229.5  ,  229.5  ,  229.5  ,  229.5  ,  229.5  ,
    229.5  ,  229.5  ,  229.5  ,  229.5  ,  229.5  ,  229.5  ,
    230.625,  230.625,  230.625,  230.625,  230.625,  230.625,
    230.625,  230.625,  230.625,  230.625,  230.625,  230.625,
    230.625,  230.625,  230.625,  230.625,  230.625,  230.625,
    230.625,  230.625,  230.625,  231.75 ,  231.75 ,  231.75 ,
    231.75 ,  231.75 ,  231.75 ,  231.75 ,  231.75 ,  231.75 ,
    231.75 ,  231.75 ,  231.75 ,  231.75 ,  231.75 ,  231.75 ,
    231.75 ,  231.75 ,  231.75 ,  231.75 ,  231.75 ,  231.75 ,
    232.875,  232.875,  232.875,  232.875,  232.875,  232.875,
    232.875,  232.875,  232.875,  232.875,  232.875,  232.875,
    232.875,  232.875,  232.875,  232.875,  232.875,  232.875,
    232.875,  232.875,  232.875,  234.   ,  234.   ,  234.   ,
    234.   ,  234.   ,  234.   ,  234.   ,  234.   ,  234.   ,
    234.   ,  234.   ,  234.   ,  234.   ,  234.   ,  234.   ,
    234.   ,  234.   ,  234.   ,  234.   ,  234.   ,  234.   ,
    235.125,  235.125,  235.125,  235.125,  235.125,  235.125,
    235.125,  235.125,  235.125,  235.125,  235.125,  235.125,
    235.125,  235.125,  235.125,  235.125,  235.125,  235.125,
    235.125,  235.125,  235.125,  236.25 ,  236.25 ,  236.25 ,
    236.25 ,  236.25 ,  236.25 ,  236.25 ,  236.25 ,  236.25 ,
    236.25 ,  236.25 ,  236.25 ,  236.25 ,  236.25 ,  236.25 ,
    236.25 ,  236.25 ,  236.25 ,  236.25 ,  236.25 ,  236.25 ,
    237.375,  237.375,  237.375,  237.375,  237.375,  237.375,
    237.375,  237.375,  237.375,  237.375,  237.375,  237.375,
    237.375,  237.375,  237.375,  237.375,  237.375,  237.375,
    237.375,  237.375,  237.375,  238.5  ,  238.5  ,  238.5  ,
    238.5  ,  238.5  ,  238.5  ,  238.5  ,  238.5  ,  238.5  ,
    238.5  ,  238.5  ,  238.5  ,  238.5  ,  238.5  ,  238.5  ,
    238.5  ,  238.5  ,  238.5  ,  238.5  ,  238.5  ,  238.5  ,
    239.625,  239.625,  239.625,  239.625,  239.625,  239.625,
    239.625,  239.625,  239.625,  239.625,  239.625,  239.625,
    239.625,  239.625,  239.625,  239.625,  239.625,  239.625,
    239.625,  239.625,  239.625,  240.75 ,  240.75 ,  240.75 ,
    240.75 ,  240.75 ,  240.75 ,  240.75 ,  240.75 ,  240.75 ,
    240.75 ,  240.75 ,  240.75 ,  240.75 ,  240.75 ,  240.75 ,
    240.75 ,  240.75 ,  240.75 ,  240.75 ,  240.75 ,  240.75 ,
    241.875,  241.875,  241.875,  241.875,  241.875,  241.875,
    241.875,  241.875,  241.875,  241.875,  241.875,  241.875,
    241.875,  241.875,  241.875,  241.875,  241.875,  241.875,
    241.875,  241.875,  241.875,  243.   ,  243.   ,  243.   ,
    243.   ,  243.   ,  243.   ,  243.   ,  243.   ,  243.   ,
    243.   ,  243.   ,  243.   ,  243.   ,  243.   ,  243.   ,
    243.   ,  243.   ,  243.   ,  243.   ,  243.   ,  243.   ,
    244.125,  244.125,  244.125,  244.125,  244.125,  244.125,
    244.125,  244.125,  244.125,  244.125,  244.125,  244.125,
    244.125,  244.125,  244.125,  244.125,  244.125,  244.125,
    244.125,  244.125,  244.125,  245.25 ,  245.25 ,  245.25 ,
    245.25 ,  245.25 ,  245.25 ,  245.25 ,  245.25 ,  245.25 ,
    245.25 ,  245.25 ,  245.25 ,  245.25 ,  245.25 ,  245.25 ,
    245.25 ,  245.25 ,  245.25 ,  245.25 ,  245.25 ,  245.25 ,
    246.375,  246.375,  246.375,  246.375,  246.375,  246.375,
    246.375,  246.375,  246.375,  246.375,  246.375,  246.375,
    246.375,  246.375,  246.375,  246.375,  246.375,  246.375,
    246.375,  246.375,  246.375,  247.5  ,  247.5  ,  247.5  ,
    247.5  ,  247.5  ,  247.5  ,  247.5  ,  247.5  ,  247.5  ,
    247.5  ,  247.5  ,  247.5  ,  247.5  ,  247.5  ,  247.5  ,
    247.5  ,  247.5  ,  247.5  ,  247.5  ,  247.5  ,  247.5  ,
    248.625,  248.625,  248.625,  248.625,  248.625,  248.625,
    248.625,  248.625,  248.625,  248.625,  248.625,  248.625,
    248.625,  248.625,  248.625,  248.625,  248.625,  248.625,
    248.625,  248.625,  248.625,  249.75 ,  249.75 ,  249.75 ,
    249.75 ,  249.75 ,  249.75 ,  249.75 ,  249.75 ,  249.75 ,
    249.75 ,  249.75 ,  249.75 ,  249.75 ,  249.75 ,  249.75 ,
    249.75 ,  249.75 ,  249.75 ,  249.75 ,  249.75 ,  249.75 ,
    250.875,  250.875,  250.875,  250.875,  250.875,  250.875,
    250.875,  250.875,  250.875,  250.875,  250.875,  250.875,
    250.875,  250.875,  250.875,  250.875,  250.875,  250.875,
    250.875,  250.875,  250.875])

lon_new = array([ 229.078125,  229.78125 ,  230.484375,  231.1875  ,  231.890625,
    232.59375 ,  233.296875,  234.      ,  234.703125,  235.40625 ,
    236.109375,  236.8125  ,  237.515625,  238.21875 ,  238.921875,
    239.625   ,  240.328125,  241.03125 ,  241.734375,  242.4375  ,
    243.140625,  243.84375 ,  244.546875,  245.25    ,  245.953125,
    246.65625 ,  247.359375,  248.0625  ,  248.765625,  249.46875 ,
    250.171875])
lat_new = array([ 18.95804884,  18.25492384,  17.55179884,  16.84867384,
    16.14554884,  15.44242384,  14.73929884,  14.03617384,
    13.33304884,  12.62992384,  11.92679884,  11.22367384,
    10.52054884,   9.81742384,   9.11429884,   8.41117384,
     7.70804884,   7.00492384,   6.30179884,   5.59867384,
     4.89554884,   4.19242384,   3.48929884,   2.78617384,
     2.08304884,   1.37992384,   0.67679884,  -0.02632616,
    -0.72945116,  -1.43257616,  -2.13570116])

dlon_new = dx = array([-0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7,
   -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7,
   -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7, -0.7])
dlat_new = dy = array([ 0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,
    0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,
    0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7,  0.7])
epsy = 1.0000000000000001e-15
epsx = 1.0000000000000001e-15

ivals = array([[  1.51914963e-03,   4.84249834e-03,   1.24178734e-02,
      1.78842712e-02,   2.73387861e-02,   3.49708572e-02,
      3.76453847e-02,   3.83761562e-02,   3.42653096e-02,
      2.37101801e-02,   1.05387643e-02,   6.25021639e-04,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  2.35232967e-03,   6.95531536e-03,   1.20530156e-02,
      1.50254052e-02,   2.06609517e-02,   2.70908102e-02,
      2.68270355e-02,   1.82730909e-02,   1.43693918e-02,
      1.78140309e-02,   1.54578537e-02,   4.77255462e-03,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  5.49260434e-03,   1.21264756e-02,   1.16909835e-02,
      1.09791821e-02,   1.34972855e-02,   1.25683891e-02,
      7.35369883e-03,   5.41831227e-03,   4.72079264e-05,
      6.89811632e-03,   7.71775097e-03,   2.97224917e-03,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  1.13926865e-02,   1.21114589e-02,   8.51153489e-03,
      5.64892637e-03,   4.42338269e-03,   2.71651126e-03,
      6.50693983e-05,   1.18285546e-03,   1.15790730e-03,
      1.27750791e-05,   1.16404856e-03,   3.87609383e-04,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  9.99477133e-03,   7.84504320e-03,   4.12580743e-03,
      1.95651152e-03,   6.27938076e-04,   3.64340417e-06,
      0.00000000e+00,   5.80144624e-05,   9.30973620e-05,
      6.09520539e-05,   3.19228930e-05,   2.95944778e-06,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  5.62612992e-03,   3.11897229e-03,   1.35576469e-03,
      2.72712990e-04,   2.18278728e-08,   2.77736224e-04,
      2.15023640e-04,   2.99098410e-05,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      5.45696821e-09,   6.18456397e-08,   1.00044417e-07],
   [  1.80969934e-03,   7.60903757e-04,   3.29161890e-06,
      5.94062985e-05,   9.03553300e-05,   1.88442812e-06,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   8.96955896e-07,
      5.46621823e-06,   6.86217982e-06,   9.91616434e-06],
   [  5.55361272e-04,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   7.27595761e-09,
      1.27329258e-08,   8.64968388e-06,   3.59374013e-07,
      9.28682766e-06,   9.36674860e-06,   5.86172609e-06,
      3.51247800e-05,   1.05878571e-04,   2.21810909e-03],
   [  4.81493998e-07,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   3.76954704e-05,
      3.13774217e-06,   4.10084112e-06,   1.22585889e-05,
      1.23064645e-04,   3.22126038e-02,   4.12977114e-03,
      4.40907385e-03,   8.58011283e-03,   1.13403024e-02,
      1.39989899e-02,   1.55630931e-02,   1.62743106e-02],
   [  3.06865149e-06,   1.18992730e-05,   2.90403641e-05,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   3.26428679e-04,
      5.05644502e-03,   7.92237557e-03,   8.84909835e-03,
      9.39421635e-03,   4.13218886e-02,   5.75748496e-02,
      1.31889293e-02,   1.34845898e-01,   1.13798976e-01,
      1.20008864e-01,   1.56037509e-01,   1.93280712e-01],
   [  5.33699116e-04,   1.72329973e-03,   3.17315105e-03,
      1.14819378e-01,   4.43908386e-02,   0.00000000e+00,
      0.00000000e+00,   5.74506557e-05,   5.10447251e-04,
      1.71848107e-03,   5.27862227e-03,   1.52162453e-02,
      8.03043172e-02,   7.01455697e-02,   1.05249695e-01,
      1.42122656e-01,   2.22821265e-01,   2.02459455e-01,
      2.06677437e-01,   2.46986017e-01,   2.63066918e-01],
   [  7.62831494e-02,   1.11132614e-01,   1.37192637e-01,
      1.43570632e-01,   1.15425527e-01,   0.00000000e+00,
      2.89876079e-05,   3.49933194e-04,   9.58649849e-04,
      2.01611011e-03,   4.83151386e-03,   1.83595419e-02,
      1.03671178e-01,   9.63126644e-02,   5.50910681e-02,
      1.36725232e-01,   1.64533973e-01,   7.98287913e-02,
      1.73291177e-01,   1.81056723e-01,   2.02676117e-01],
   [  1.07610516e-01,   1.21951140e-01,   1.01695523e-01,
      4.15301125e-04,   0.00000000e+00,   0.00000000e+00,
      2.18786477e-06,   3.11349390e-06,   1.33068315e-04,
      3.67084111e-04,   1.08024117e-03,   3.34545830e-03,
      8.69611651e-03,   1.37638608e-02,   2.27879807e-02,
      4.41205539e-02,   5.16842529e-02,   3.70345488e-02,
      5.38833812e-02,   6.32722452e-02,   1.56152964e-01],
   [  1.10440794e-02,   3.89250601e-03,   2.37991480e-05,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      1.04574056e-07,   8.74274861e-07,   2.26301170e-04,
      8.31953774e-04,   1.92522176e-03,   4.67427028e-03,
      1.10447202e-02,   1.51307033e-02,   1.29928729e-02,
      2.08757464e-02,   2.11046692e-02,   3.58685926e-02],
   [  1.40534030e-04,   6.79020388e-07,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   6.55058902e-05,   2.59673747e-04,
      7.57753383e-04,   1.35594222e-03,   1.73954351e-03,
      4.76868916e-03,   5.21047926e-03,   9.71581228e-03],
   [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   3.23413442e-05,   3.17198865e-05,
      3.07607057e-04,   2.70675024e-04,   1.48168497e-03],
   [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   6.51265509e-05],
   [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
      0.00000000e+00,   0.00000000e+00,   0.00000000e+00]], dtype=float32)

This is the part of the mlab code that flags the error:

dx.max()-dx.min() = 1.7763568394002505e-15
dy.max()-dy.min() = 0.0
epsy = np.finfo(yi.dtype).resolution 
if dx.max()-dx.min() > epsx or dy.max()-dy.min() > epsy:
   raise ValueError("output grid must have constant spacing"
                    " when using interp='linear'")

I would love to know how to get around this problem. I don't own this python installation so I cannot modify the if statement. Sometimes this works and sometimes it doesn't, it seems to depend on the data input but in this case when it does break, the dy and dy are all the same. Is this a bug in mlab? If I change to 'nn' instead of linear, the problem goes away but I need the 'linear' interpolation.

Thanks, /Shejo284


回答1:


I've had no luck with mlab. Switched to scipy.interpolate.griddata instead. It seems to work and the results look good.

nvals = scipy.interpolate.griddata((lon_old.ravel(),     
                                   lat_old.ravel()),    
                                   tmp.ravel(),          
                                   (lon_new,lat_new),    
                                   method='linear')

Thanks for your contributions.




回答2:


Strangely, on my machine copying and pasting the input arrays from your output works perfectly. This suggests that the following will fix your problems:

lat_new = numpy.round(lat_new, 10)
lon_new = numpy.round(lon_new, 10)

It also suggests that you may be able to change the code that created them in the first place.



来源:https://stackoverflow.com/questions/12338649/mlab-griddata-bug

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!