How to read an analogue gauge using Open CV

强颜欢笑 提交于 2019-12-10 23:32:39

问题


I'm interested in trying to read an analog gauge using a Raspberry PI and Open CV. I've only really messed with face detection in opencv, so I don't even know where to begin. Any ideas, starting points?


回答1:


You can detect circles with HoughCircles method and detect lines with HoughLinesP method of with opencv lib in Python. After detecting these, you can find out the value of the gauge from the line's position via trigonometry. You can see the sample code in python. It basically does these:

  • Read image with imread method.
  • turn it in to gray with cvtColor.
  • Find out the circles' center x,y coordinates and radius with HoughCircles, these method has some parameter that can be tweaked.
  • Detect the lines with HoughLinesP method again parameters should be tweaked.
  • Calculate the value, considering max value, min value on the gauge and angle interval of the gauge.

Reference: https://github.com/intel-iot-devkit/python-cv-samples/tree/master/examples/analog-gauge-reader Hope this helps. CODE:

import os
import cv2
import numpy

def getScriptDir():
    currentFile = __file__  # May be 'my_script', or './my_script' or
    realPath = os.path.realpath(currentFile)  # /home/user/test/my_script.py
    dirPath = os.path.dirname(realPath)
    return dirPath
def getUserRealGaugeDetails():
    min_angle = input('Min derece: ') #the lowest possible angle
    max_angle = input('Max derece ') #highest possible angle
    min_value = input('Min deger: ') #usually zero
    max_value = input('Max deger: ') #maximum reading of the gauge
    units = input('Birim girin: ')
    return min_angle,max_angle,min_value,max_value,units

def setStaticUserRealGaugeDetails():
    min_angle = 5 # input('Min angle (lowest possible angle of dial) - in degrees: ') #the lowest possible angle
    max_angle = 355  # input('Max angle (highest possible angle) - in degrees: ') #highest possible angle
    min_value = -20 #input('Min value: ') #usually zero
    max_value = 120 #input('Max value: ') #maximum reading of the gauge
    units = 'b' #input('Enter units: ')
    return min_angle,max_angle,min_value,max_value,units

def getImage():
    dirPath = getScriptDir()
    dirPath += "/images/1.jpg"
    return cv2.imread(dirPath)
def distance2Points(x1, y1, x2, y2):
    #print np.sqrt((x2-x1)^2+(y2-y1)^2)
    return numpy.sqrt((x2 - x1)**2 + (y2 - y1)**2)

def averageCircle(circles, b):
    avg_x=0
    avg_y=0
    avg_r=0
    for i in range(b):
        #optional - average for multiple circles (can happen when a gauge is at a slight angle)
        avg_x = avg_x + circles[0][i][0]
        avg_y = avg_y + circles[0][i][1]
        avg_r = avg_r + circles[0][i][2]
    avg_x = int(avg_x/(b))
    avg_y = int(avg_y/(b))
    avg_r = int(avg_r/(b))
    return avg_x, avg_y, avg_r

#return the center and radius of the circle
def getCircleAndCustomize(image):
    height, width = image.shape[:2]
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  #convert to gray

    # gray = cv2.GaussianBlur(gray, (5, 5), 0)
    # gray = cv2.medianBlur(gray, 5)
    # cv2.imwrite('C:/Users/okarademirci/Desktop/analog-gauge-reader/images/gauge-gray-2.jpg', gray)
    #detect circles
    #restricting the search from 35-48% of the possible radii gives fairly good results across different samples.  Remember that
    #these are pixel values which correspond to the possible radii search range.
    circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, numpy.array([]), 100, 50, int(height*0.35), int(height*0.48))
    #coordinates and radius
    a, b, c = circles.shape
    x,y,r = averageCircle(circles, b)
    return x ,y ,r

def get_current_value(img, min_angle, max_angle, min_value, max_value, x, y, r):

    gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Set threshold and maxValue
    thresh = 175
    maxValue = 255

    # for testing purposes, found cv2.THRESH_BINARY_INV to perform the best
    # th, dst1 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY);
    # th, dst2 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY_INV);
    # th, dst3 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TRUNC);
    # th, dst4 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TOZERO);
    # th, dst5 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TOZERO_INV);
    # cv2.imwrite('gauge-%s-dst1.%s' % (gauge_number, file_type), dst1)
    # cv2.imwrite('gauge-%s-dst2.%s' % (gauge_number, file_type), dst2)
    # cv2.imwrite('gauge-%s-dst3.%s' % (gauge_number, file_type), dst3)
    # cv2.imwrite('gauge-%s-dst4.%s' % (gauge_number, file_type), dst4)
    # cv2.imwrite('gauge-%s-dst5.%s' % (gauge_number, file_type), dst5)

    # apply thresholding which helps for finding lines
    th, dst2 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY_INV)

    # found Hough Lines generally performs better without Canny / blurring, though there were a couple exceptions where it would only work with Canny / blurring
    #dst2 = cv2.medianBlur(dst2, 5)
    #dst2 = cv2.Canny(dst2, 50, 150)
    #dst2 = cv2.GaussianBlur(dst2, (5, 5), 0)

    # for testing, show image after thresholding
    dirPath = getScriptDir() + '/images/afterTreshold.jpg'
    cv2.imwrite(dirPath, dst2)

    # find lines
    minLineLength = 10
    maxLineGap = 0
    lines = cv2.HoughLinesP(image=dst2, rho=3, theta=numpy.pi / 180, threshold=100,minLineLength=minLineLength, maxLineGap=0)  # rho is set to 3 to detect more lines, easier to get more then filter them out later

    #for testing purposes, show all found lines
    # for i in range(0, len(lines)):
    #   for x1, y1, x2, y2 in lines[i]:
    #      cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
    #      cv2.imwrite('gauge-%s-lines-test.%s' %(gauge_number, file_type), img)

    # remove all lines outside a given radius
    final_line_list = []
    #print "radius: %s" %r

    diff1LowerBound = 0.15 #diff1LowerBound and diff1UpperBound determine how close the line should be from the center
    diff1UpperBound = 0.25
    diff2LowerBound = 0.5 #diff2LowerBound and diff2UpperBound determine how close the other point of the line should be to the outside of the gauge
    diff2UpperBound = 1.0
    for i in range(0, len(lines)):
        for x1, y1, x2, y2 in lines[i]:
            diff1 = distance2Points(x, y, x1, y1)  # x, y is center of circle
            diff2 = distance2Points(x, y, x2, y2)  # x, y is center of circle
            #set diff1 to be the smaller (closest to the center) of the two), makes the math easier
            if (diff1 > diff2):
                temp = diff1
                diff1 = diff2
                diff2 = temp
            # check if line is within an acceptable range
            if (((diff1<diff1UpperBound*r) and (diff1>diff1LowerBound*r) and (diff2<diff2UpperBound*r)) and (diff2>diff2LowerBound*r)):
                line_length = distance2Points(x1, y1, x2, y2)
                # add to final list
                final_line_list.append([x1, y1, x2, y2])

    #testing only, show all lines after filtering
    # for i in range(0,len(final_line_list)):
    #     x1 = final_line_list[i][0]
    #     y1 = final_line_list[i][1]
    #     x2 = final_line_list[i][2]
    #     y2 = final_line_list[i][3]
    #     cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)

    # assumes the first line is the best one
    x1 = final_line_list[0][0]
    y1 = final_line_list[0][1]
    x2 = final_line_list[0][2]
    y2 = final_line_list[0][3]
    cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)

    #for testing purposes, show the line overlayed on the original image
    #cv2.imwrite('gauge-1-test.jpg', img)
    #cv2.imwrite('C:/Users/okarademirci/Desktop/analog-gauge-reader/images/gauge-%s-lines-2.%s' % (gauge_number, file_type), img)

    #find the farthest point from the center to be what is used to determine the angle
    dist_pt_0 = distance2Points(x, y, x1, y1)
    dist_pt_1 = distance2Points(x, y, x2, y2)
    if (dist_pt_0 > dist_pt_1):
        x_angle = x1 - x
        y_angle = y - y1
    else:
        x_angle = x2 - x
        y_angle = y - y2
    # take the arc tan of y/x to find the angle
    res = numpy.arctan(numpy.divide(float(y_angle), float(x_angle)))
    #np.rad2deg(res) #coverts to degrees

    # print x_angle
    # print y_angle
    # print res
    # print np.rad2deg(res)

    #these were determined by trial and error
    res = numpy.rad2deg(res)
    if x_angle > 0 and y_angle > 0:  #in quadrant I
        final_angle = 270 - res
    if x_angle < 0 and y_angle > 0:  #in quadrant II
        final_angle = 90 - res
    if x_angle < 0 and y_angle < 0:  #in quadrant III
        final_angle = 90 - res
    if x_angle > 0 and y_angle < 0:  #in quadrant IV
        final_angle = 270 - res

    #print final_angle

    old_min = float(min_angle)
    old_max = float(max_angle)

    new_min = float(min_value)
    new_max = float(max_value)

    old_value = final_angle

    old_range = (old_max - old_min)
    new_range = (new_max - new_min)
    new_value = (((old_value - old_min) * new_range) / old_range) + new_min

    return new_value


def main():

    # 1) get the image from directory.
    image = getImage()

    min_angle,max_angle,min_value,max_value,units = setStaticUserRealGaugeDetails()

    # 2) covnert the image to gray .    
    # 3) find the circle in the image with customization
    x,y,r = getCircleAndCustomize(image)
    # 4) find the line in the circle.
    # 5) find the value in the range of guage
    newValue = get_current_value(image,min_angle,max_angle,min_value,max_value,x,y,r)
    print(newValue)

if __name__=='__main__':
    main()


来源:https://stackoverflow.com/questions/44474947/how-to-read-an-analogue-gauge-using-open-cv

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!