微服务
但通常而言, 微服务架构是一种架构模式或者说是一种架构风格,它提倡将单一应用程序划分成一组小的服务,每个服务运行在其独立的自己的进程中,服务之间互相协调、互相配合,为用户提供最终价值。服务之间采用轻量级的通信机制互相沟通(通常是基于HTTP的RESTful API)。每个服务都围绕着具体业务进行构建,并且能够被独立地部署到生产环境、类生产环境等。另外,应尽量避免统一的、集中式的服务管理机制,对具体的一个服务而言,应根据业务上下文,选择合适的语言、工具对其进行构建,可以有一个非常轻量级的集中式管理来协调这些服务,可以使用不同的语言来编写服务,也可以使用不同的数据存储。
微服务化的核心就是将传统的一站式应用,根据业务拆分成一个一个的服务,彻底地去耦合,每一个微服务提供单个业务功能的服务,一个服务做一件事,从技术角度看就是一种小而独立的处理过程,类似进程概念,能够自行单独启动或销毁,拥有自己独立的数据库
优点
每个服务足够内聚,足够小,代码容易理解这样能聚焦一个指定的业务功能或业务需求开发简单、开发效率提高,一个服务可能就是专一的只干一件事。
微服务能够被小团队单独开发,这个小团队是2到5人的开发人员组成。
微服务是松耦合的,是有功能意义的服务,无论是在开发阶段或部署阶段都是独立的。
微服务能使用不同的语言开发。
易于和第三方集成,微服务允许容易且灵活的方式集成自动部署,通过持续集成工具,如Jenkins, Hudson, bamboo 。
微服务易于被一个开发人员理解,修改和维护,这样小团队能够更关注自己的工作成果。无需通过合作才能体现价值。
微服务允许你利用融合最新技术。
微服务只是业务逻辑的代码,不会和HTML,CSS 或其他界面组件混合。
每个微服务都有自己的存储能力,可以有自己的数据库。也可以有统一数据库。
缺点
开发人员要处理分布式系统的复杂性
多服务运维难度,随着服务的增加,运维的压力也在增大
系统部署依赖
服务间通信成本
数据一致性
系统集成测试
微服务技术栈有哪些
微服务条目 | 落地技术 | 备注 |
---|---|---|
服务开发 | Springboot、Spring、SpringMVC | |
服务配置与管理 | Netflix公司的Archaius、阿里的Diamond等 | |
服务注册与发现 | Eureka、Consul、Zookeeper等 | |
服务调用 | Rest、RPC、gRPC | |
服务熔断器 | Hystrix、Envoy等 | |
负载均衡 | Ribbon、Nginx等 | |
服务接口调用(客户端调用服务的简化工具) | Feign等 | |
消息队列 | Kafka、RabbitMQ、ActiveMQ等 | |
服务配置中心管理 | SpringCloudConfig、Chef等 | |
服务路由(API网关) | Zuul等 | |
服务监控 | Zabbix、Nagios、Metrics、Spectator等 | |
全链路追踪 | Zipkin,Brave、Dapper等 | |
服务部署 | Docker、OpenStack、Kubernetes等 | |
数据流操作开发包 | SpringCloud Stream(封装与Redis,Rabbit、Kafka等发送接收消息) |
SpringCloud和Dubbo
最大区别:SpringCloud抛弃了Dubbo的RPC通信,采用的是基于HTTP的REST方式。
严格来说,这两种方式各有优劣。虽然从一定程度上来说,后者牺牲了服务调用的性能,但也避免了上面提到的原生RPC带来的问题。而且REST相比RPC更为灵活,服务提供方和调用方的依赖只依靠一纸契约,不存在代码级别的强依赖,这在强调快速演化的微服务环境下,显得更加合适。
Eureka
Netflix在设计Eureka时遵守的就是AP原则
Spring Cloud 封装了 Netflix 公司开发的 Eureka 模块来实现服务注册和发现(请对比Zookeeper)。
Eureka 采用了 C-S 的设计架构。Eureka Server 作为服务注册功能的服务器,它是服务注册中心。
而系统中的其他微服务,使用 Eureka 的客户端连接到 Eureka Server并维持心跳连接。这样系统的维护人员就可以通过 Eureka Server 来监控系统中各个微服务是否正常运行。SpringCloud 的一些其他模块(比如Zuul)就可以通过 Eureka Server 来发现系统中的其他微服务,并执行相关的逻辑。
Eureka包含两个组件:Eureka Server和Eureka Client
Eureka Server提供服务注册服务
各个节点启动后,会在EurekaServer中进行注册,这样EurekaServer中的服务注册表中将会存储所有可用服务节点的信息,服务节点的信息可以在界面中直观的看到
EurekaClient是一个Java客户端,用于简化Eureka Server的交互,客户端同时也具备一个内置的、使用轮询(round-robin)负载算法的负载均衡器。在应用启动后,将会向Eureka Server发送心跳(默认周期为30秒)。如果Eureka Server在多个心跳周期内没有接收到某个节点的心跳,EurekaServer将会从服务注册表中把这个服务节点移除(默认90秒)
三大角色
Eureka Server 提供服务注册和发现
Service Provider服务提供方将自身服务注册到Eureka,从而使服务消费方能够找到
Service Consumer服务消费方从Eureka获取注册服务列表,从而能够消费服务
作为服务注册中心,Eureka比Zookeeper好在哪里
作为服务注册中心,Eureka比Zookeeper好在哪里
著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性)、A(可用性)和P(分区容错性)。由于分区容错性P在是分布式系统中必须要保证的,因此我们只能在A和C之间进行权衡。
因此
Zookeeper保证的是CP,
Eureka则是AP。
4.1 Zookeeper保证CP
当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s, 且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。
4.2 Eureka保证AP
Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:
- Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
- Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用)
- 当网络稳定时,当前实例新的注册信息会被同步到其它节点中
因此, Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样使整个注册服务瘫痪。
来源:CSDN
作者:mufengmozi
链接:https://blog.csdn.net/mufengmozi/article/details/103474803