问题
I have a DataFrame like this
>>> df = pd.DataFrame([[1,1,2,3,4,5,6],[2,7,8,9,10,11,12]],
columns=['id', 'ax','ay','az','bx','by','bz'])
>>> df
id ax ay az bx by bz
0 1 1 2 3 4 5 6
1 2 7 8 9 10 11 12
and I want to transform it into something like this
id name x y z
0 1 a 1 2 3
1 2 a 7 8 9
2 1 b 4 5 6
3 2 b 10 11 12
This is an unpivot / melt problem, but I don't know of any way to melt by keeping these groups intact. I know I can create projections across the original dataframe and then concat
those but I'm wondering if I'm missing some common melt tricks from my toolbelt.
回答1:
Set_index, convert columns to multi index and stack,
df = df.set_index('id')
df.columns = [df.columns.str[1], df.columns.str[0]]
new_df = df.stack().reset_index().rename(columns = {'level_1': 'name'})
id name x y z
0 1 a 1 2 3
1 1 b 4 5 6
2 2 a 7 8 9
3 2 b 10 11 12
回答2:
Not melt wide_to_long
with stack
and unstack
pd.wide_to_long(df,['a','b'],i='id',j='drop',suffix='\w+').stack().unstack(1)
Out[476]:
drop x y z
id
1 a 1 2 3
b 4 5 6
2 a 7 8 9
b 10 11 12
来源:https://stackoverflow.com/questions/55403008/pandas-partial-melt-or-group-melt