问题
Am getting a compilation error converting the pre-LDA transformation to a data frame using SCALA in SPARK 2.0. The specific code that is throwing an error is as per below:
val documents = PreLDAmodel.transform(mp_listing_lda_df)
.select("docId","features")
.rdd
.map{ case Row(row_num: Long, features: MLVector) => (row_num, features) }
.toDF()
The complete compilation error is:
Error:(132, 8) value toDF is not a member of org.apache.spark.rdd.RDD[(Long, org.apache.spark.ml.linalg.Vector)]
possible cause: maybe a semicolon is missing before `value toDF'?
.toDF()
Here is the complete code:
import java.io.FileInputStream
import java.sql.{DriverManager, ResultSet}
import java.util.Properties
import org.apache.spark.SparkConf
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.clustering.LDA
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel, RegexTokenizer, StopWordsRemover}
import org.apache.spark.ml.linalg.{Vector => MLVector}
import org.apache.spark.mllib.clustering.{LDA => oldLDA}
import org.apache.spark.rdd.JdbcRDD
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
object MPClassificationLDA {
/*Start: Configuration variable initialization*/
val props = new Properties
val fileStream = new FileInputStream("U:\\JIRA\\MP_Classification\\target\\classes\\mpclassification.properties")
props.load(fileStream)
val mpExtract = props.getProperty("mpExtract").toString
val shard6_db_server_name = props.getProperty("shard6_db_server_name").toString
val shard6_db_user_id = props.getProperty("shard6_db_user_id").toString
val shard6_db_user_pwd = props.getProperty("shard6_db_user_pwd").toString
val mp_output_file = props.getProperty("mp_output_file").toString
val spark_warehouse_path = props.getProperty("spark_warehouse_path").toString
val rf_model_file_path = props.getProperty("rf_model_file_path").toString
val windows_hadoop_home = props.getProperty("windows_hadoop_home").toString
val lda_vocabulary_size = props.getProperty("lda_vocabulary_size").toInt
val pre_lda_model_file_path = props.getProperty("pre_lda_model_file_path").toString
val lda_model_file_path = props.getProperty("lda_model_file_path").toString
fileStream.close()
/*End: Configuration variable initialization*/
val conf = new SparkConf().set("spark.sql.warehouse.dir", spark_warehouse_path)
def main(arg: Array[String]): Unit = {
//SQL Query definition and parameter values as parameter upon executing the Object
val cont_id = "14211599"
val top = "100000"
val start_date = "2016-05-01"
val end_date = "2016-06-01"
val mp_spark = SparkSession
.builder()
.master("local[*]")
.appName("MPClassificationLoadLDA")
.config(conf)
.getOrCreate()
MPClassificationLDACalculation(mp_spark, cont_id, top, start_date, end_date)
mp_spark.stop()
}
private def MPClassificationLDACalculation
(mp_spark: SparkSession
,cont_id: String
,top: String
,start_date: String
,end_date: String
): Unit = {
//DB connection definition
def createConnection() = {
Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver").newInstance();
DriverManager.getConnection("jdbc:sqlserver://" + shard6_db_server_name + ";user=" + shard6_db_user_id + ";password=" + shard6_db_user_pwd);
}
//DB Field Names definition
def extractvalues(r: ResultSet) = {
Row(r.getString(1),r.getString(2))
}
//Prepare SQL Statement with parameter value replacement
val query = """SELECT docId = audt_id, text = auction_title FROM brands6.dbo.uf_ds_marketplace_classification_listing(@cont_id, @top, '@start_date', '@end_date') WHERE ? < ? OPTION(RECOMPILE);"""
.replaceAll("@cont_id", cont_id)
.replaceAll("@top", top)
.replaceAll("@start_date", start_date)
.replaceAll("@end_date", end_date)
.stripMargin
//Connect to Source DB and execute the Prepared SQL Steatement
val mpDataRDD = new JdbcRDD(mp_spark.sparkContext
,createConnection
,query
,lowerBound = 0
,upperBound = 10000000
,numPartitions = 1
,mapRow = extractvalues)
val schema_string = "docId,text"
val fields = StructType(schema_string.split(",")
.map(fieldname => StructField(fieldname, StringType, true)))
//Create Data Frame using format identified through schema_string
val mpDF = mp_spark.createDataFrame(mpDataRDD, fields)
mpDF.collect()
val mp_listing_tmp = mpDF.selectExpr("cast(docId as long) docId", "text")
mp_listing_tmp.printSchema()
println(mp_listing_tmp.first)
val mp_listing_lda_df = mp_listing_tmp.withColumn("docId", mp_listing_tmp("docId"))
mp_listing_lda_df.printSchema()
val tokenizer = new RegexTokenizer()
.setInputCol("text")
.setOutputCol("rawTokens")
.setMinTokenLength(2)
val stopWordsRemover = new StopWordsRemover()
.setInputCol("rawTokens")
.setOutputCol("tokens")
val vocabSize = 4000
val countVectorizer = new CountVectorizer()
.setVocabSize(vocabSize)
.setInputCol("tokens")
.setOutputCol("features")
val PreLDApipeline = new Pipeline()
.setStages(Array(tokenizer, stopWordsRemover, countVectorizer))
val PreLDAmodel = PreLDApipeline.fit(mp_listing_lda_df)
//comment out after saving it the first time
PreLDAmodel.write.overwrite().save(pre_lda_model_file_path)
val documents = PreLDAmodel.transform(mp_listing_lda_df)
.select("docId","features")
.rdd
.map{ case Row(row_num: Long, features: MLVector) => (row_num, features) }
.toDF()
//documents.printSchema()
val numTopics: Int = 20
val maxIterations: Int = 100
//note the FeaturesCol need to be set
val lda = new LDA()
.setOptimizer("em")
.setK(numTopics)
.setMaxIter(maxIterations)
.setFeaturesCol(("_2"))
val vocabArray = PreLDAmodel.stages(2).asInstanceOf[CountVectorizerModel].vocabulary
}
}
Am thinking that it is related to conflicts in the imports section of the code. Appreciate any help.
回答1:
2 things needed to be done:
Import implicits: Note that this should be done only after an instance of org.apache.spark.sql.SQLContext
is created. It should be written as:
val sqlContext= new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
Move case class outside of the method: case class, by use of which you define the schema of the DataFrame, should be defined outside of the method needing it. You can read more about it here: https://issues.scala-lang.org/browse/SI-6649
来源:https://stackoverflow.com/questions/39839984/value-todf-is-not-a-member-of-org-apache-spark-rdd-rddlong-org-apache-spark-m