RxJava 1.x使用与理解

爱⌒轻易说出口 提交于 2019-12-10 06:14:39

RxJava 1.x使用与理解——2018.5.22

前一段时间,项目引入RxJava,用起来很简单,但是对原理不甚理解,于是参考各种资料,对照源码,进行了深入学习,写在这里,希望对看到的小伙伴有所帮助

RxJava源码理解并不简单,感谢各位前辈们的无私分析分享,才让我能更高效地学习进步,再次感谢!

本文定位:学习笔记

学习过程记录,加深理解,提升文字组合表达能力。也希望能给学习RxJava的同学一些灵感
大部分内容整理于[此文]

RxJava是什么


tips:无相关基础的话,看了下面的相关定义,是不太可能直接理解的,所以,不建议一开始纠结于此段内容,可以先看后面内容,回头就会豁然开朗了。

RxJava – Reactive Extensions for the JVM – a library for composing asynchronous and event-based programs using observable sequences for the Java VM. ————官网
翻译:RxJava – Reactive Extensions for the JVM – 一个在 Java VM 上使用可观测的序列来组成异步的、基于事件的程序的库

这是需要强调的是**Reactive Extensions**,响应式编程扩展,RxJava实际是实现了Java中的响应式编程风格,RxJava是ReactiveX((有多语言版本)的Java实现

ReactiveX:An API for asynchronous programming with observable streams

RxJava优点(ReactiveX优点)


在Java平台实现了响应式编程风格

分步操作,每一步阅读起来清晰:
复杂操作分步进行,使代码在复杂逻辑下看下来依然逻辑清晰。通过链式调用,将每一步功能组合起来实现复杂功能。

异步操作很关键的一点是程序的简洁性,因为在调度过程比较复杂的情况下,异步代码经常会既难写也难被读懂。 Android 创造的 AsyncTask 和Handler ,其实都是为了让异步代码更加简洁。RxJava 的优势也是简洁,但它的简洁的与众不同之处在于,随着程序逻辑变得越来越复杂,它依然能够保持简洁。

响应式编程的思路


数据流:

Event buses 或者 Click events 本质上就是异步事件流,你可以监听并处理这些事件。响应式编程的思路大概如下:你可以用包括 Click 和 Hover 事件在内的任何东西创建 Data stream。Stream 廉价且常见,任何东西都可以是一个 Stream:变量、用户输入、属性、Cache、数据结构等等。举个例子,想像一下你的 Twitter feed 就像是 Click events 那样的 Data stream,你可以监听它并相应的作出响应。——jikexueyuan

数据流操作:

在这个基础上,你还有令人惊艳的函数去组合、创建、过滤这些 Streams。这就是函数式魔法的用武之地。Stream 能接受一个,甚至多个 Stream 为输入。你可以融合两个 Stream,也可以从一个 Stream 中过滤出你感兴趣的 Events 以生成一个新的 Stream,还可以把一个 Stream 中的数据值 映射到一个新的 Stream 中。

扩展的观察者模式


观察者模式

观察者模式面向的需求是:A 对象(观察者)对 B 对象(被观察者)的某种变化高度敏感,需要在 B 变化的一瞬间做出反应。

Android 开发中一个比较典型的例子是点击监听器 OnClickListener 。对设置 OnClickListener 来说, View 是被观察者, OnClickListener 是观察者,二者通过 setOnClickListener() 方法达成订阅关系。订阅之后用户点击按钮的瞬间,Android Framework 就会将点击事件发送给已经注册的 OnClickListener 。

采取这样被动的观察方式,既省去了反复检索状态的资源消耗,也能够得到最高的反馈速度。

RxJava 的观察者模式

RxJava 有四个基本概念:Observable (可观察者,即被观察者)、 Observer (观察者)、 subscribe (订阅)、事件。Observable 和 Observer 通过 subscribe() 方法实现订阅关系,从而 Observable 可以在需要的时候发出事件来通知 Observer。

与传统观察者模式不同, RxJava 的事件回调方法除了普通事件 onNext() (相当于 onClick() / onEvent())之外,还定义了两个特殊的事件:onCompleted() 和 onError()。

  • onCompleted(): 事件队列完结。RxJava 不仅把每个事件单独处理,还会把它们看做一个队列。RxJava 规定,当不会再有新的 onNext() 发出时,需要触发 onCompleted() 方法作为标志。
  • onError(): 事件队列异常。在事件处理过程中出异常时,onError() 会被触发,同时队列自动终止,不允许再有事件发出。
  • 在一个正确运行的事件序列中, onCompleted() 和 onError() 有且只有一个,并且是事件序列中的最后一个。需要注意的是,onCompleted() 和 onError() 二者也是互斥的,即在队列中调用了其中一个,就不应该再调用另一个。

RxJava变换


所谓变换,就是将事件序列中的对象或整个序列进行加工处理,转换成不同的事件或事件序列。

RxJava 提供了对事件序列进行变换的支持,这是它的核心功能之一,也是大多数人说『RxJava 真是太好用了』的最大原因。

RxJava的API,主要都是基于变换实现的。

变换的原理:lift()

这些变换虽然功能各有不同,但实质上都是针对事件序列的处理和再发送。而在 RxJava 的内部,它们是基于同一个基础的变换方法: lift(Operator)。首先看一下 lift() 的内部实现(仅核心代码):

// 注意:这不是 lift() 的源码,而是将源码中与性能、兼容性、扩展性有关的代码剔除后的核心代码。
// 如果需要看源码,可以去 RxJava 的 GitHub 仓库下载。
public <R> Observable<R> lift(Operator<? extends R, ? super T> operator) {
    return Observable.create(new OnSubscribe<R>() {
        @Override
        public void call(Subscriber subscriber) {
            Subscriber newSubscriber = operator.call(subscriber);
            newSubscriber.onStart();
            onSubscribe.call(newSubscriber);
        }
    });
}

这段代码很有意思:它生成了一个新的 Observable 并返回,而且创建新 Observable 所用的参数 OnSubscribe 的回调方法 call() 中的实现竟然看起来和前面讲过的 Observable.subscribe() 一样!然而它们并不一样哟~不一样的地方关键就在于第二行 onSubscribe.call(subscriber) 中的 onSubscribe 所指代的对象不同

subscribe() 中这句话的 onSubscribe 指的是 Observable 中的 onSubscribe 对象,这个没有问题,但是 lift() 之后的情况就复杂了点。

当含有 lift() 时:

  1. lift() 创建了一个 Observable 后,加上之前的原始 Observable,已经有两个 Observable 了;
  2. 而同样地,新 Observable 里的新 OnSubscribe 加上之前的原始 Observable 中的原始 OnSubscribe,也就有了两个 OnSubscribe;
  3. 当用户调用经过 lift() 后的 Observable 的 subscribe() 的时候,使用的是 lift() 所返回的新的 Observable ,于是它所触发的 onSubscribe.call(subscriber),也是用的新 Observable 中的新 OnSubscribe,即在 lift() 中生成的那个 OnSubscribe;
  4. 而这个新 OnSubscribe 的 call() 方法中的 onSubscribe ,就是指的原始 Observable 中的原始 OnSubscribe ,在这个 call() 方法里,新 OnSubscribe 利用 operator.call(subscriber) 生成了一个新的 Subscriber(Operator 就是在这里,通过自己的 call() 方法将新 Subscriber 和原始 Subscriber 进行关联,并插入自己的『变换』代码以实现变换),然后利用这个新 Subscriber 向原始 Observable 进行订阅。

这样就实现了 lift() 过程,有点像一种代理机制,通过事件拦截和处理实现事件序列的变换

精简掉细节的话,也可以这么说:在 Observable 执行了 lift(Operator) 方法之后,会返回一个新的 Observable,这个新的 Observable 会像一个代理一样,负责接收原始的 Observable 发出的事件,并在处理后发送给 Subscriber。

两次和多次的 lift() 图示:

线程控制 —— Scheduler


在不指定线程的情况下, RxJava 遵循的是线程不变的原则,即:在哪个线程调用 subscribe(),就在哪个线程生产事件;在哪个线程生产事件,就在哪个线程消费事件。如果需要切换线程,就需要用到 Scheduler (调度器)。

Scheduler 的 API

在RxJava 中,Scheduler ——调度器,相当于线程控制器,RxJava 通过它来指定每一段代码应该运行在什么样的线程。RxJava 已经内置了几个 Scheduler ,它们已经适合大多数的使用场景:

  • Schedulers.immediate(): 直接在当前线程运行,相当于不指定线程。这是默认的 Scheduler。
  • Schedulers.newThread(): 总是启用新线程,并在新线程执行操作。
  • Schedulers.io(): I/O 操作(读写文件、读写数据库、网络信息交互等)所使用的 Scheduler。行为模式和 newThread() 差不多,区别在于 io() 的内部实现是是用一个无数量上限的线程池,可以重用空闲的线程,因此多数情况下 io() 比 newThread() 更有效率。不要把计算工作放在 io() 中,可以避免创建不必要的线程。
  • Schedulers.computation(): 计算所使用的 Scheduler。这个计算指的是 CPU 密集型计算,即不会被 I/O 等操作限制性能的操作,例如图形的计算。这个 Scheduler 使用的固定的线程池,大小为 CPU 核数。不要把 I/O 操作放在 computation() 中,否则 I/O 操作的等待时间会浪费 CPU。
  • 另外, Android 还有一个专用的 AndroidSchedulers.mainThread(),它指定的操作将在 Android 主线程运行。

有了这几个 Scheduler ,就可以使用 subscribeOn() 和 observeOn() 两个方法来对线程进行控制了。 * subscribeOn(): 指定 subscribe() 所发生的线程,即 Observable.OnSubscribe 被激活时所处的线程。或者叫做事件产生的线程。 * observeOn(): 指定 Subscriber 所运行在的线程。或者叫做事件消费的线程。

Observable.just(1, 2, 3, 4)
    .subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程
    .observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程
    .subscribe(new Action1<Integer>() {
        @Override
        public void call(Integer number) {
            Log.d(tag, "number:" + number);
        }
    });

前面讲到了,可以利用 subscribeOn() 结合 observeOn() 来实现线程控制,让事件的产生和消费发生在不同的线程。可是在了解了 map() flatMap() 等变换方法后,有些好事的(其实就是当初刚接触 RxJava 时的我)就问了:能不能多切换几次线程?

答案是:能。因为 observeOn() 指定的是 Subscriber 的线程,而这个 Subscriber 并不是(严格说应该为『不一定是』,但这里不妨理解为『不是』)subscribe() 参数中的 Subscriber ,而是 observeOn() 执行时的当前 Observable 所对应的 Subscriber ,即它的直接下级 Subscriber 。换句话说,observeOn() 指定的是它之后的操作所在的线程。因此如果有多次切换线程的需求,只要在每个想要切换线程的位置调用一次 observeOn() 即可。

Observable.just(1, 2, 3, 4) // IO 线程,由 subscribeOn() 指定
    .subscribeOn(Schedulers.io())
    .observeOn(Schedulers.newThread())
    .map(mapOperator) // 新线程,由 observeOn() 指定
    .observeOn(Schedulers.io())
    .map(mapOperator2) // IO 线程,由 observeOn() 指定
    .observeOn(AndroidSchedulers.mainThread) 
    .subscribe(subscriber);  // Android 主线程,由 observeOn() 指定

不同于 observeOn() , subscribeOn() 的位置放在哪里都可以,但它是只能调用一次的。

Scheduler 的原理

subscribeOn() 和 observeOn() 的内部实现,也是用的 lift()

subscribeOn()在新返回的Observable中,线程切换发生在 OnSubscribe 中,即在它通知上一级 OnSubscribe 时,这时事件还没有开始发送,因此 subscribeOn() 的线程控制可以从事件发出的开端就造成影响

而 observeOn() 的线程切换则发生在它内建的 Subscriber 中,即发生在它即将给下一级 Subscriber 发送事件时,因此 observeOn() 控制的是它后面的线程

多个 subscribeOn() 和 observeOn() 混合使用时,线程调度图解

图中共有 5 处含有对事件的操作。由图中可以看出,①和②两处受第一个 subscribeOn() 影响,运行在红色线程;③和④处受第一个 observeOn() 的影响,运行在绿色线程;⑤处受第二个 onserveOn() 影响,运行在紫色线程;而第二个 subscribeOn() ,由于在通知过程中线程就被第一个 subscribeOn() 截断,因此对整个流程并没有任何影响。这里也就回答了前面的问题:当使用了多个 subscribeOn() 的时候,只有第一个 subscribeOn() 起作用。

RxJava 的适用场景

综合来讲:对于可以分步进行的复杂的数据变换非常友好

举例:

  • 与 Retrofit 的结合
  • 数据多条件过滤
  • 各种异步操作

参考

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!