Remove incorrect subsequent solutions without once

巧了我就是萌 提交于 2019-12-10 01:50:32

问题


I have a predicate that finds the correct solution but then goes on to find solutions which are not right.

?- data(D),data_threshold_nonredundantbumps(D,5,Bs),write(D).
[3,6,7,8,2,4,5,6,9,4,7,3]
D = [3, 6, 7, 8, 2, 4, 5, 6, 9|...],
Bs = [bump([11], [7]), bump([8, 9], [6, 9]), bump([2, 3, 4], [6, 7, 8])] ;
[3,6,7,8,2,4,5,6,9,4,7,3]
D = [3, 6, 7, 8, 2, 4, 5, 6, 9|...],
Bs = [bump([8, 9], [6, 9]), bump([2, 3, 4], [6, 7, 8])] ;
[3,6,7,8,2,4,5,6,9,4,7,3]
D = [3, 6, 7, 8, 2, 4, 5, 6, 9|...],
Bs = [bump([8], [6]), bump([2, 3, 4], [6, 7, 8])] ;
[3,6,7,8,2,4,5,6,9,4,7,3]
D = [3, 6, 7, 8, 2, 4, 5, 6, 9|...],
Bs = [bump([9], [9]), bump([2, 3, 4], [6, 7, 8])] ;
[3,6,7,8,2,4,5,6,9,4,7,3]
D = [3, 6, 7, 8, 2, 4, 5, 6, 9|...],
Bs = [bump([11], [7]), bump([2, 3, 4], [6, 7, 8])] ;
[3,6,7,8,2,4,5,6,9,4,7,3]
D = [3, 6, 7, 8, 2, 4, 5, 6, 9|...],
Bs = [bump([2, 3, 4], [6, 7, 8])] ;

etc

The idea is that it will find all the nonredundant bumps in the data, where a bump is a consecutive sublist of data that is above threshold, Returning an ordered (by size) list of bump/2s where the first arg of bump/2 is a list of indicies from data and the second arg is the list of values. So bump([2, 3, 4], [6, 7, 8]) means that in data indices 2,3 and 4 are above 5, they are 6,7,8.

How do I add conditions so that these extra solutions are not found? -Without using once/1.

If my code could be streamlined in other ways please let me know. It seems a little complicated for what it is trying to do.

So:

Here is my code:

:-use_module(library(clpfd)).

fd_length(L, N) :-
 N #>= 0,
 fd_length(L, N, 0).

fd_length([], N, N0) :-
 N #= N0.
fd_length([_|L], N, N0) :-
 N1 is N0+1,
 N #>= N1,
 fd_length(L, N, N1).

equidistant_stride([],_).
equidistant_stride([Z|Zs],D) :-
 foldl(equidistant_stride_(D),Zs,Z,_).

equidistant_stride_(D,Z1,Z0,Z1) :-
 Z1 #= Z0+D.

consecutive_ascending_integers(Zs) :-
 equidistant_stride(Zs,1).

consecutive_ascending_integers_from(Zs,Z0) :-
 Zs = [Z0|_],
 consecutive_ascending_integers(Zs).

bool01_t(1,true).
bool01_t(0,false).

if_(C_1,Then_0,Else_0) -->
 { call(C_1,Truth) },
 { functor(Truth,_,0) },  % safety check
 (  { Truth == true }  -> phrase(Then_0)
 ;  { Truth == false },   phrase(Else_0)
 ).

if_(If_1, Then_0, Else_0) :-
 call(If_1, T),
 (  T == true -> call(Then_0)
 ;  T == false -> call(Else_0)
 ;  nonvar(T) -> throw(error(type_error(boolean,T),_))
 ;  /* var(T) */ throw(error(instantiation_error,_))
 ).


 #=<(X,Y,Truth) :- X #=< Y #<==> B, bool01_t(B,Truth).

 #<( X,Y,Truth) :- X #<  Y #<==> B, bool01_t(B,Truth).

 #>( X,Y,Truth) :- X #>  Y #<==> B, bool01_t(B,Truth).

 #>=(X,Y,Truth) :- X #>= Y #<==> B, bool01_t(B,Truth).

tinclude(P_2,Xs,Zs) :-
 list_tinclude_list(Xs,P_2,Zs).

list_tinclude_list([],   _P_2,[]).
list_tinclude_list([i_v(E0,E1)|Es],P_2,Fs0) :-
 if_(call(P_2,E1), Fs0 = [i_v(E0,E1)|Fs], Fs0 = Fs),
 list_tinclude_list(Es,P_2,Fs).


tfilter(P_2,As,Bs) :-
 tinclude(P_2,As,Bs).

%% =====================================================================
%% =====================================================================

data([5,6,7,8,3,2,6,7]).

list_index_element(L,I,E):-
 nth1(I,L,E).  

filter(Threshold,DataPairs,FilterdPairs):-
 tfilter(#<(Threshold),DataPairs,FilterdPairs).

i_v_pair(I,V,i_v(I,V)).

data_indices_indicespairs(D,Is,Pairs):-
 same_length(D,Is),
 consecutive_ascending_integers_from(Is,1),
 maplist(i_v_pair,Is,D,Pairs).

list_ascending(List,MinLength,MaxLength):-
 Max in MinLength..MaxLength,
 labeling([max(Max)],[Max]),
 fd_length(List,Max),
 consecutive_ascending_integers(List).

region_minlength_maxlength(Region,MinLength,MaxLength,All):-
 list_ascending(Region,MinLength,MaxLength),
 append(_Before,End,All),
 append(Region,_End2,End).

data_threshold_bumpvalues_bumplocation(Data,Threshold,Bumpvalues,Bumplocation):-
 length(Data,MaxBump),
 data_indices_indicespairs(Data,_Is,Pairs),
 filter(Threshold,Pairs,FilteredPairs),
 maplist(i_v_pair,FilteredIndices,_FilteredValues,FilteredPairs),
 %Test =test(FilteredIndexes,FilteredValues),
 dif(Bumplocation,[]),
 region_minlength_maxlength(Bumplocation,0,MaxBump,FilteredIndices),
 maplist(list_index_element(Data), Bumplocation,Bumpvalues).


list_first_last([H|T],H,L):-
 last(T,L).

listoflists_firsts_lasts(Listoflists,Firsts,Lasts):-
 maplist(list_first_last,Listoflists,Firsts,Lasts).

%start is not between location1 and location2
start_location1_location2(Start,Location1,Location2) :-
 #\(   Location1 #=< Start,
 Start #=< Location2).

bumplocation_notsublist_of_any_acs(Bumplocation,Acs):-
 listoflists_firsts_lasts(Acs,Firsts,Lasts),
 %the start of bumplocation can not be between the start of any Acs
 Bumplocation =[Bumpstart|_],
 maplist(start_location1_location2(Bumpstart),Firsts,Lasts).


loc_val_bump(Location,Value,bump(Location,Value)).

data_bumplocations_bumpvalues(Data,Bumplocations,Bumpvalues):-
 maplist(list_index_element(Data),Bumplocations,Bumpvalues).

%this works but finds extra solutins so needs to be refined.
data_threshold_nonredundantbumps(Data,Threshold,Bumps):-
 data_threshold_nonredundantbumps_ac(Data,Threshold,Nonredundantbumpslocations,[]),
 maplist(data_bumplocations_bumpvalues(Data),Nonredundantbumpslocations,Nonredundantbumps),
 maplist(loc_val_bump,Nonredundantbumpslocations,Nonredundantbumps,Bumps).

data_threshold_nonredundantbumps_ac(Data,Threshold,Nonredundantbumps,Ac0):-
 bumplocation_notsublist_of_any_acs(Bumplocation,Ac0),
 data_threshold_bumpvalues_bumplocation(Data,Threshold,_Bumpvalues,Bumplocation),
 append([Bumplocation],Ac0,Ac1),
 data_threshold_nonredundantbumps_ac(Data,Threshold,Nonredundantbumps,Ac1).

data_threshold_nonredundantbumps_ac(_Data,_Threshold,Ac0,Ac0).

回答1:


My impression is that you are overthinking this slightly. There is a straight-forward formulation for runs of numbers that exceed the threshold, which can be defined by considering the elements from first to last in a single traversal of the list. In particular, we do not need append/3 to do this.

Always consider using DCG notation (dcg) when describing lists in Prolog. In this case, it takes a moment of reflection to decide how to best apply DCGs, because we are describing two lists:

  • lists of runs (successive elements exceeding the threshold)
  • within runs, lists of indices and values.

However, excepting a few tricks and extensions, a DCG essentially only lets us describe a single list, not separate lists at the same time. So, we have this powerful and likely very suitable mechanism at our disposal, and must choose for which kind of list we want to apply it primarily.

In the following, I show a solution that uses a DCG to describe a list of bump/1 terms, that is, I "dedicate" the mechanism to describe the first kind of lists mentioned above, and use another DCG to describe the second kind of list, which I invoke via phrase/2 from within the first DCG.

data_threshold_bumps(Ds, T, Bs) :-
        phrase(bumps(Ds, 1, T), Bs).

bumps([], _, _) --> [].
bumps([D|Ds0], I0, T) -->
        { D #> T,
          phrase(bump(D, T, Ds0, Ds, I0, I), Bs) },
        [bump(Bs)],
        bumps(Ds, I, T).
bumps([D|Ds0], I0, T) -->
        { D #=< T,
          I #= I0 + 1 },
        bumps(Ds0, I, T).


bump(D, T, Ds0, Ds, I0, I) --> [I0-D],
        { I1 #= I0 + 1 },
        run(Ds0, Ds, T, I1, I).

run([], [], _, I, I) --> [].
run([D|Ds0], Ds, T, I0, I) --> [I0-D],
        { D #> T,
          I1 #= I0 + 1 },
        run(Ds0, Ds, T, I1, I).
run([D|Ds0], [D|Ds0], T, I, I) -->
        { D #=< T }.

Example query and answer:

?- data_threshold_bumps([3,6,7,8,2,4,5,6,9,4,7,3], 5, Bs).
Bs = [bump([2-6, 3-7, 4-8]), bump([8-6, 9-9]), bump([11-7])] ;
false.

Note that this is not quite the exact same data representation that you need, but it is trivial to convert it to that one.

Here are a few ideas to improve upon this solution, from easier to harder:

  • Get rid of unnecessary choice-points, using if_/3.
  • Does it actually make sense to use DCG notation for bumps//3 and run//5 in the code above? What are the benefits and drawbacks of using DCGs here over regular predicates?
  • Play with different views of the problem: Can you turn the DCG view around? For example, what about describing the actual data with a DCG, instead of the bumps?
  • Track down the origin(s) of unwanted solutions in the code you posted.

By the way, to negate a (reifiable) CLP(FD) constraint, you need to use (#/\)/2 to denote a conjunction. It does not work with (,)/2.




回答2:


in the following code, you'll find a number of sections bracketed by

:- if(false).
...
:- endif.

all these sections get the same result

?- data_threshold_bumps([3,6,7,8,2,4,5,6,9,4,7,3], 5, Bs).
Bs = [bump([11], [7]), bump([8, 9], [6, 9]), bump([2, 3, 4], [6, 7, 8])] ;
false.

The code itself it's just an application of pattern matching, and, from last to first, show a possible way to refactor the same basic bump/5 predicate to get better readability (but, to be true, my preferred one it's the last one...)

data_threshold_bumps(Es, T, Sorted) :-
    bumps(Es, 1, T, Bs),
    predsort(by_len, Bs, Sorted).

bumps([], _, _, []).
bumps([E|Es], P, T, Bs) :-
    succ(P, Q),
    bumps(Es, Q, T, Cs),
    bump(E, P, T, Cs, Bs).

by_len(<, bump(Xs,_), bump(Ys,_)) :-
    length(Xs, Xl),
    length(Ys, Yl), Xl < Yl.
by_len(>, _, _).

:- use_module(library(clpfd)).

bump(E, _, T, Bs, Bs) :- E #=< T.
bump(E, P, T, Cs, Bs) :- E #> T, elem_placed(E, P, Cs, Bs).

elem_placed(E, P, [], [bump([P], [E])]).
elem_placed(E, P, [X|Bs], [Y|Bs]) :-
    X = bump([Q|Ps], [F|Es]),
    P #= Q-1,
    Y = bump([P,Q|Ps], [E,F|Es]).
elem_placed(E, P, [X|Bs], [bump([P],[E]), X|Bs]) :-
    X = bump([Q|_Ps], _Es),
    P #\= Q-1.

:- if(false).

bump(E, _, T, Bs, Bs) :- E =< T.
bump(E, P, T, Cs, Bs) :- E > T, elem_placed(E, P, Cs, Bs).

% first stored: tail
elem_placed(E, P, [], [bump([P], [E])]).
% extend current
elem_placed(E, P, [X|Bs], [Y|Bs]) :-
    X = bump([Q|Ps], [F|Es]),
    succ(P, Q),
    Y = bump([P,Q|Ps], [E,F|Es]).
% place new
elem_placed(E, P, [X|Bs], [bump([P],[E]), X|Bs]) :-
    X = bump([Q|_Ps], _Es),
    \+ succ(P, Q).

:- endif.

:- if(false).

bump(E, _, T, Bs, Bs) :- E =< T.
bump(E, P, T, Cs, Bs) :- E > T, enabled(E, P, Cs, Bs).

enabled(E, P, [], [bump([P], [E])]).
enabled(E, P, [bump([Q|Ps], [F|Es])|Bs], [bump([P,Q|Ps], [E,F|Es])|Bs]) :- succ(P, Q).
enabled(E, P, [bump([Q|Ps], [F|Es])|Bs], [bump([P],[E]), bump([Q|Ps],[F|Es])|Bs]) :- \+ succ(P, Q).

:- endif.

:- if(false).

bump(E, _, T, Bs, Bs) :- E =< T.
bump(E, P, T, [], [bump([P], [E])]) :- E > T.
bump(E, P, T, [bump([Q|Ps], [F|Es])|Bs], [bump([P,Q|Ps], [E,F|Es])|Bs]) :- E > T, succ(P, Q).
bump(E, P, T, [bump([Q|Ps], [F|Es])|Bs], [bump([P],[E]), bump([Q|Ps],[F|Es])|Bs]) :- E > T, \+ succ(P, Q).

:- endif.


来源:https://stackoverflow.com/questions/38543599/remove-incorrect-subsequent-solutions-without-once

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!