问题
Suppose I have dataframe like
id p1 p2 p3 p4
1 0 9 0 4
2 0 0 0 4
3 1 3 10 7
4 1 5 3 1
5 2 3 7 10
Want to find column names of top-n highest-value columns in each pandas data frame row and want to exclude zero value from top 3.
id top1 top2 top3
1 p2 p4
2 p4
3 p3 p4 p2
4 p2 p3 p4/p1
5 p4 p3 p2
The present solutions return column names which are having zero too. Is there way to exclude zero values. have this solution
arank = df.apply(np.argsort, axis = 1)
ranked_cols = df.columns.to_series()[arank.values[:,::-1][:,:3]]
new_df = pd.DataFrame(ranked_cols, index=df.index)
there also other solutions such as Find names of top-n highest-value columns in each pandas dataframe row. Can these be modified to exclude columns with zero value?
回答1:
You need reorder values by column names, and where 0
replace by mask to empty strings:
df = df.set_index('id')
k = 3
vals = df.values
arr1 = np.argsort(-vals, axis=1)
print (vals[np.arange(len(df.index))[:,None], arr1][:,:k])
[[ 9 4 0]
[ 4 0 0]
[10 7 3]
[ 5 3 1]
[10 7 3]]
a = df.columns[arr1[:,:k]]
mask = vals[np.arange(len(df.index))[:,None], arr1][:,:k] == 0
print (mask)
[[False False True]
[False True True]
[False False False]
[False False False]
[False False False]]
result = pd.DataFrame(a, columns=['top{}'.format(i) for i in range(1, k+1)],
index=df.index)
result = result.mask(mask, '')
print(result)
top1 top2 top3
id
1 p2 p4
2 p4
3 p3 p4 p2
4 p2 p3 p1
5 p4 p3 p2
来源:https://stackoverflow.com/questions/43568381/find-names-of-top-n-highest-value-non-zero-columns-in-each-pandas-dataframe-ro