《数学之美》;作者吴军大家都很熟悉。这本书主要的作用是引起了我对机器学习和自然语言处理的兴趣。里面以极为通俗的语言讲述了数学在这两个领域的应用。
《统计学习方法》;作者李航,是国内机器学习领域的几个大家之一,曾在MSRA任高级研究员,现在华为诺亚方舟实验室。书中写了十个算法,每个算法的介绍都很干脆,直接上公式,是彻头彻尾的“干货书”。每章末尾的参考文献也方便了想深入理解算法的童鞋直接查到经典论文;本书可以与上面两本书互为辅助阅读。
《MachineLearning》(《机器学习》);作者TomMitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。这本书是领域内翻译的较好的书籍,讲述的算法也比《统计学习方法》的范围要大很多。据评论这本书主要在于启发,讲述公式为什么成立而不是推导;不足的地方在于出版年限较早,时效性不如PRML。但有些基础的经典还是不会过时的,所以这本书现在几乎是机器学习的必读书目。
《DataMining:Practical Machine Learning Tools and Techniques》(《数据挖掘:实用机器学习技术》);作者IanH.Witten、EibeFrank是weka的作者、新西兰怀卡托大学教授。他们的《Managing Giga bytes》也是信息检索方面的经典书籍。这本书最大的特点是对weka的使用进行了介绍,但是其理论部分太单薄,作为入门书籍还可。
《Pattern Recognition And Machine Learning》;作者ChristopherM.Bishop[6];简称PRML,侧重于概率模型,是贝叶斯方法的扛鼎之作,据评“具有强烈的工程气息,可以配合stanford大学AndrewNg教授的MachineLearning视频教程一起来学,效果翻倍。”
《The Elements of Statistical Learning:Data Mining, Inference, and Prediction》,(《统计学习基础:数据挖掘、推理与预测》第二版);作者RobertTibshirani、TrevorHastie、JeromeFriedman。“这本书的作者是Boosting方法最活跃的几个研究人员,发明的GradientBoosting提出了理解Boosting方法的新角度,极大扩展了Boosting方法的应用范围。这本书对当前最为流行的方法有比较全面深入的介绍,对工程人员参考价值也许要更大一点。另一方面,它不仅总结了已经成熟了的一些技术,而且对尚在发展中的一些议题也有简明扼要的论述。让读者充分体会到机器学习是一个仍然非常活跃的研究领域,应该会让学术研究人员也有常读常新的感受。”
《DataMining:Concepts and Techniques》,(《数据挖掘:概念与技术》第三版);作者(美)JiaweiHan、(加)MichelineKamber、(加)JianPei,其中第一作者是华裔。本书毫无疑问是数据挖掘方面的的经典之作,不过翻译版总是被喷,没办法,大部分翻译过来的书籍都被喷,想要不吃别人嚼过的东西,就好好学习英文吧。
《Principle of Data Mining》D.Hand,H.Mannila and P.Smith 本书从统计学的角度看待数据挖掘,因为统计学是一门数学,所以本书强调数学上的正确性(Validity)。按照本书观点,数据挖掘是分析(往往是大量的)数据集以找到未曾预料的关系,并以可理解又有用的新颖方式呈现给数据用户的过程。
《Introduction to DataMining》Pang-NingTan,VipinKumaretc.国内目前有翻译版(http://book.douban.com/subject/1786120/),这是我现在觉得最好的数据挖掘教材。关于分类、关联规则、聚类每一主题都分两章来讲述:第一章讲基本部分,第二章讲高级部分,让人由浅入深。另有单独的一章介绍异常检测。本书的第一作者是物理背景出身,所以讲解很重视对于算法的理解(优缺点与适用范围等)。本书能找到PDF版完整的习题答案,非常适合于自学。
《Mining of Massive Datasets》(《大数据》);作者AnandRajaraman、JeffreyDavidUllman,Anand是Stanford的PhD。这本书介绍了很多算法,也介绍了这些算法在数据规模比较大的时候的变形。但是限于篇幅,每种算法都没有展开讲的感觉,如果想深入了解需要查其他的资料,不过这样的话对算法进行了解也足够了。还有一点不足的地方就是本书原文和翻译都有许多错误,勘误表比较长,读者要用心了。
《数据挖掘:概念与技术》第三版,韩家炜 非常经典。
来源:oschina
链接:https://my.oschina.net/u/2392723/blog/779399