问题
Given the type of a callable function C
, I want to get at compile time a std::function
; the type of which:
- has the same return type of function
C
- the argument types are the first
N
argument types of functionC
This means that, for a given type void(int, char, double)
and a given N
, the type of the function is:
N = 1
=> result type:std::function<void(int)>
N = 2
=> result type:std::function<void(int, char)>
N = 3
=> result type:std::function<void(int, char, double)>
N > 3
=> compile time error
Example:
template<std::size_t N, typename R, typename... A>
constexpr auto get() {
return /*(magically somehow)*/ std::function<R(FirstNFromA...)>
}
template<std::size_t N, typename R, typename... A>
struct S {
using func = decltype(get<N, R, A...>());
};
回答1:
It follows a possible solution:
#include <tuple>
#include <utility>
#include <functional>
#include <type_traits>
template<
typename R,
typename... A,
std::size_t... I,
std::enable_if_t<(sizeof...(I)<=sizeof...(A))>* = nullptr
> constexpr auto
get(std::integer_sequence<std::size_t, I...>) {
return std::function<R(std::tuple_element_t<I, std::tuple<A...>>...)>{};
}
template<std::size_t, typename>
struct FuncType;
template<std::size_t N, typename R, typename... A>
struct FuncType<N, R(A...)> {
using Type = decltype(get<R, A...>(std::make_index_sequence<N>{}));
};
int main() {
static_assert(
std::is_same<
FuncType<2, void(int, char, double, int)>::Type,
std::function<void(int, char)>
>::value,
"!"
);
}
The basic idea is to use a tuple
and those utilities that are part of the Standard template Library (as an example, std::tuple_element
), mix them with a pack expansion placed in the right place and that's all.
To do that, I used a constexpr
function that returns an empty std::function
object of the given type. Then the type of the function is taken by means of a decltype
and exported as a type of the FuncType
object using an alias.
Everything takes place at compile time.
In order to deduce the right type for that function, I used a well known pattern that involves a std::integer_sequence
and actually unpack the types of a tuple by expanding the indexes.
回答2:
Another solution could be:
#include <tuple>
#include <utility>
#include <functional>
#include <type_traits>
template <size_t N, class R, class Pack, class ResultPack, class Voider>
struct FuncTypeImpl;
template <size_t N, class R, template <class...> class Pack, class First, class... Args, class... ResultArgs>
struct FuncTypeImpl<N, R, Pack<First, Args...>, Pack<ResultArgs...>, std::enable_if_t<(N > 0)>>: FuncTypeImpl<N-1, R, Pack<Args...>, Pack<ResultArgs..., First>, void> {
using typename FuncTypeImpl<N-1, R, Pack<Args...>, Pack<ResultArgs..., First>, void>::Type;
};
template <size_t N, class R, template <class...> class Pack, class... Args, class... ResultArgs>
struct FuncTypeImpl<N, R, Pack<Args...>, Pack<ResultArgs...>, std::enable_if_t<(N == 0)>> {
using Type = std::function<R(ResultArgs...)>;
};
template<std::size_t, typename>
struct FuncType;
template<std::size_t N, typename R, typename... A>
struct FuncType<N, R(A...)> {
using Type = typename FuncTypeImpl<N, R, std::tuple<A...>, std::tuple<>, void>::Type;
};
int main() {
static_assert(
std::is_same<
FuncType<3, void(int, char, double, int)>::Type,
std::function<void(int, char, double)>
>::value,
"!"
);
}
Edit: Yet another maybe a little bit simpler (that does not need a std::tuple) solution:
#include <utility>
#include <functional>
#include <type_traits>
template <class T>
struct ResultOf;
template <class R, class... Args>
struct ResultOf<R(Args...)> {
using Type = R;
};
template<std::size_t N, class Foo, class ResultFoo = typename ResultOf<Foo>::Type() , class Voider = void>
struct FuncType;
template<std::size_t N, class R, class First, class... Args, class... ResultArgs >
struct FuncType<N, R(First, Args...), R(ResultArgs...), std::enable_if_t<(N > 0)>>: FuncType<N-1, R(Args...), R(ResultArgs..., First), void> {
};
template<std::size_t N, class R, class First, class... Args, class... ResultArgs >
struct FuncType<N, R(First, Args...), R(ResultArgs...), std::enable_if_t<(N == 0)>> {
using Type = std::function<R(ResultArgs...)>;
};
int main() {
static_assert(
std::is_same<
FuncType<3, void(int, char, double*, int)>::Type,
std::function<void(int, char, double*)>
>::value,
"!"
);
}
回答3:
Another tuple based solution.
Should work with C++11 too.
I suppose it can be simplified but I don't know how to avoid the use of the bool
template parameter (I'm just learning C++11).
#include <tuple>
#include <utility>
#include <functional>
#include <type_traits>
template<std::size_t N, bool Z, typename R, typename...>
struct FTH1;
template <typename R, typename... A, typename... B>
struct FTH1<0U, true, R, std::tuple<A...>, B...>
{ using type = decltype(std::function<R(A...)>{}); };
template <std::size_t N, typename R, typename... A, typename B0, typename... B>
struct FTH1<N, false, R, std::tuple<A...>, B0, B...>
{ using type = typename FTH1<N-1U, (N-1U == 0U), R, std::tuple<A..., B0>, B...>::type; };
template <std::size_t N, typename>
struct FuncType;
template<std::size_t N, typename R, typename... A>
struct FuncType<N, R(A...)>
{ using Type = typename FTH1<N, (N == 0), R, std::tuple<>, A...>::type; };
int main() {
static_assert(
std::is_same<
FuncType<2, void(int, char, double, int)>::Type,
std::function<void(int, char)>
>::value,
"!"
);
}
p.s.: sorry for my bad English.
回答4:
As I mentioned in the comments, if such problem arises then my first approach would be to change the problem itself! Sometimes, instead of finding a "tough solution" for a "tough problem", it's better to make the problem itself "simpler"!
There should never be a need, where one has to write FuncType<2, R(X,Y,Z)>::type
instead of simple std::function<R(X,Y)>
.
Above is my real answer. To solve your problem as a coding delight, I am putting a simple macro based answer. Instead of compile time, it will give you the required type at preprocessing time.
#define F(R, ...) std::function<R(__VA_ARGS__)> // shorthand for std::function...
#define FuncType(N, R, ...) FUNC_##N(R, __VA_ARGS__) // Main type
#define FUNC_0(R, ...) F(R) // overload for 0 arg
#define FUNC_1(R, _1, ...) F(R, _1) // overload for 1 arg
#define FUNC_2(R, _1, _2, ...) F(R, _1, _2) // overload for 2 args
#define FUNC_3(R, _1, _2, _3, ...) F(R, _1, _2, _3) // overload for 3 args
Usage:
int main() {
static_assert(std::is_same<
FuncType(2, void, int, char, double, int), // <--- see usage
std::function<void(int, char)>
>::value, "!");
}
As you can see there is a little change in usage. Instead of FuncType<2, void(int, char, double, int)>::type
, I am using FuncType(2, void, int, char, double, int)
. Here is the demo.
As of now, the FUNC_N
macros are overloaded upto 3 arguments. For more arguments, if we want to avoid copy pastes, then we can generate a header file with a simple program:
std::ofstream funcN("FUNC_N.h"); // TODO: error check for argv & full path for file
for(size_t i = 0, N = stoi(argv[1]); i < N; ++i)
{
funcN << "#define FUNC_" << i << "(R"; // FUNC_N
for(size_t j = 1; j <= i; ++j)
funcN << ", _" << j; // picking up required args
funcN << ", ...) "; // remaining args
funcN << "F(R"; // std::function
for(size_t j = 1; j <= i; ++j)
funcN << ", _" << j; // passing only relevant args
funcN <<")\n";
}
And simply #include
it:
#define F(R, ...) std::function<R(__VA_ARGS__)>
#define FuncType(N, R, ...) FUNC_##N(R, __VA_ARGS__)
#include"FUNC_N.h"
Here is the demo for how to generate the header file.
来源:https://stackoverflow.com/questions/37541787/create-a-stdfunction-type-with-limited-arguments