结合网上的图形验证码思路和方案,弄了一个比较复杂的图形验证码工具,可以比较有效防OCR

妖精的绣舞 提交于 2019-12-09 11:03:19

验证码效果如下:有静态的,动态的,中空的

结合网上的图形验证码技术,不依赖第三方包纯java加工了一个比较复杂的图形验证码方案,防OCR防机器人
网上的图形验证码方案都是零星的,弄了一个随机字体、随机彩色字符、随机字体大小、随机扭曲、随机旋转等技术,能有效的防OCR、描边、深浅色等技术识别
本意是想区分登录、领券、抽奖等一些场景操作的,后来一想,随机拼人品吧,于是就有了下面的工具类

package com.test;

import java.awt.AlphaComposite;
import java.awt.Color;
import java.awt.Font;
import java.awt.FontFormatException;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Arrays;
import java.util.Random;

import javax.imageio.ImageIO;

import org.apache.log4j.Logger;

/**
 * 验证码工具类:
 * 随机字体、字体样式、字体大小(验证码图片宽度 - 8 ~ 验证码图片宽度 + 10)
 * 彩色字符 每个字符的颜色随机,一定会不相同
 * 随机字符 阿拉伯数字 + 小写字母 + 大写字母
 * 3D中空自定义字体,需要单独使用,只有阿拉伯数字和大写字母
 * 
 * @author cgtu
 * @date 2017年5月9日 下午7:27:55
 */
public class RandomVerifyImgCodeUtil
{
	private static Logger logger = Logger.getLogger(RandomVerifyImgCodeUtil.class);
	/**
	 * 随机类
	 */
	private static Random random = new Random();

	// 放到session中的key
	public static final String RANDOMCODEKEY = "RANDOMVALIDATECODEKEY";

	// 验证码来源范围,去掉了0,1,I,O,l,o几个容易混淆的字符
	public static final String VERIFY_CODES = "23456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnpqrstuvwxyz";
	
	private static ImgFontByte imgFontByte = new ImgFontByte();
	
	private static Font baseFont;
	static
	{
		try
		{
			baseFont = Font.createFont(Font.TRUETYPE_FONT, new ByteArrayInputStream(imgFontByte.hex2byte(imgFontByte.getFontByteStr())));
		}
		catch (FontFormatException e)
		{
			logger.error("new img font font format failed. e: " + e.getMessage(), e);
		}
		catch (IOException e)
		{
			logger.error("new img font io failed. e: " + e.getMessage(), e);
		}
	}

	// 字体类型
	private static String[] fontName =
	{
			"Algerian", "Arial", "Arial Black", "Agency FB", "Calibri", "Cambria", "Gadugi", "Georgia", "Consolas", "Comic Sans MS", "Courier New",
			"Gill sans", "Time News Roman", "Tahoma", "Quantzite", "Verdana"
	};

	// 字体样式
	private static int[] fontStyle =
	{
			Font.BOLD, Font.ITALIC, Font.ROMAN_BASELINE, Font.PLAIN, Font.BOLD + Font.ITALIC
	};

	// 颜色
	private static Color[] colorRange =
	{
			Color.WHITE, Color.CYAN, Color.GRAY, Color.LIGHT_GRAY, Color.MAGENTA, Color.ORANGE, Color.PINK, Color.YELLOW, Color.GREEN, Color.BLUE,
			Color.DARK_GRAY, Color.BLACK, Color.RED
	};

	/**
	 * 使用系统默认字符源生成验证码
	 * 
	 * @param verifySize
	 *            验证码长度
	 * @param uuid
	 *            App端传的参数,app没有session和cookie,必须用设备号在redis记录图形验证码的值
	 * @param platFormName
	 *            平台名称:pc\wap\app app比较特殊,需要单独处理
	 * @param request
	 *            请求
	 * @return
	 */
	public static String generateVerifyCode(int verifySize)
	{
		return generateVerifyCode(verifySize, VERIFY_CODES);
	}

	/**
	 * 使用指定源生成验证码
	 * 
	 * @param verifySize
	 *            验证码长度
	 * @param sources
	 *            验证码字符源
	 * @return
	 */
	private static String generateVerifyCode(int verifySize, String sources)
	{
		if (sources == null || sources.length() == 0)
		{
			sources = VERIFY_CODES;
		}
		int codesLen = sources.length();
		Random rand = new Random(System.currentTimeMillis());
		StringBuilder verifyCode = new StringBuilder(verifySize);
		for (int i = 0; i < verifySize; i++)
		{
			verifyCode.append(sources.charAt(rand.nextInt(codesLen - 1)));
		}

		return verifyCode.toString();
	}

	/**
	 * 输出指定验证码图片流
	 * 
	 * @param w
	 *            验证码图片的宽
	 * @param h
	 *            验证码图片的高
	 * @param os
	 *            流
	 * @param code
	 *            验证码
	 * @param type
	 *            场景类型,login:登录,
	 *            coupons:领券 登录清晰化,领券模糊化
	 *            3D: 3D中空自定义字体
	 *            GIF:普通动态GIF
	 *            GIF3D:3D动态GIF
	 *            mix2: 普通字体和3D字体混合
	 *            mixGIF: 混合动态GIF
	 * @throws IOException
	 */
	public static void outputImage(int w, int h, OutputStream os, String code, String type) throws IOException
	{
		int verifySize = code.length();
		BufferedImage image = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
		Random rand = new Random();
		Graphics2D g2 = image.createGraphics();
		g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
		Color[] colors = new Color[5];
		Color[] colorSpaces = colorRange;
		float[] fractions = new float[colors.length];
		for (int i = 0; i < colors.length; i++)
		{
			colors[i] = colorSpaces[rand.nextInt(colorSpaces.length)];
			fractions[i] = rand.nextFloat();
		}
		Arrays.sort(fractions);

		g2.setColor(Color.GRAY);// 设置边框色
		g2.fillRect(0, 0, w, h);

		Color c = getRandColor(200, 250);
		g2.setColor(c);// 设置背景色
		g2.fillRect(0, 2, w, h - 4);

		char[] charts = code.toCharArray();
		for (int i = 0; i < charts.length; i++)
		{
			g2.setColor(c);// 设置背景色
			g2.setFont(getRandomFont(h, type));
			g2.fillRect(0, 2, w, h - 4);
		}

		// 1.绘制干扰线
		Random random = new Random();
		g2.setColor(getRandColor(160, 200));// 设置线条的颜色
		int lineNumbers = 20;
		if (type.equals("login") || type.contains("mix") || type.contains("3D"))
		{
			lineNumbers = 20;
		}
		else if (type.equals("coupons"))
		{
			lineNumbers = getRandomDrawLine();
		}
		else
		{
			lineNumbers = getRandomDrawLine();
		}
		for (int i = 0; i < lineNumbers; i++)
		{
			int x = random.nextInt(w - 1);
			int y = random.nextInt(h - 1);
			int xl = random.nextInt(6) + 1;
			int yl = random.nextInt(12) + 1;
			g2.drawLine(x, y, x + xl + 40, y + yl + 20);
		}

		// 2.添加噪点
		float yawpRate = 0.05f;
		if (type.equals("login") || type.contains("mix") || type.contains("3D"))
		{
			yawpRate = 0.05f; // 噪声率
		}
		else if (type.equals("coupons"))
		{
			yawpRate = getRandomDrawPoint(); // 噪声率
		}
		else
		{
			yawpRate = getRandomDrawPoint(); // 噪声率
		}
		int area = (int) (yawpRate * w * h);
		for (int i = 0; i < area; i++)
		{
			int x = random.nextInt(w);
			int y = random.nextInt(h);
			int rgb = getRandomIntColor();
			image.setRGB(x, y, rgb);
		}

		// 3.使图片扭曲
		shear(g2, w, h, c);

		char[] chars = code.toCharArray();
		Double rd = rand.nextDouble();
		Boolean rb = rand.nextBoolean();

		if (type.equals("login"))
		{
			for (int i = 0; i < verifySize; i++)
			{
				g2.setColor(getRandColor(100, 160));
				g2.setFont(getRandomFont(h, type));

				AffineTransform affine = new AffineTransform();
				affine.setToRotation(Math.PI / 4 * rd * (rb ? 1 : -1), (w / verifySize) * i + (h - 4) / 2, h / 2);
				g2.setTransform(affine);
				g2.drawOval(random.nextInt(w), random.nextInt(h), 5 + random.nextInt(10), 5 + random.nextInt(10));
				g2.drawChars(chars, i, 1, ((w - 10) / verifySize) * i + 5, h / 2 + (h - 4) / 2 - 10);
			}

			g2.dispose();
			ImageIO.write(image, "jpg", os);
		}
		else if (type.contains("GIF") || type.contains("mixGIF"))
		{
			GifEncoder gifEncoder = new GifEncoder(); // gif编码类,这个利用了洋人写的编码类
			// 生成字符
			gifEncoder.start(os);
			gifEncoder.setQuality(180);
			gifEncoder.setDelay(150);
			gifEncoder.setRepeat(0);

			AlphaComposite ac3;
			for (int i = 0; i < verifySize; i++)
			{
				g2.setColor(getRandColor(100, 160));
				g2.setFont(getRandomFont(h, type));
				for (int j = 0; j < verifySize; j++)
				{
					AffineTransform affine = new AffineTransform();
					affine.setToRotation(Math.PI / 4 * rd * (rb ? 1 : -1), (w / verifySize) * i + (h - 4) / 2, h / 2);
					g2.setTransform(affine);
					g2.drawChars(chars, i, 1, ((w - 10) / verifySize) * i + 5, h / 2 + (h - 4) / 2 - 10);

					ac3 = AlphaComposite.getInstance(AlphaComposite.SRC_OVER, getAlpha(j, i, verifySize));
					g2.setComposite(ac3);
					g2.drawOval(random.nextInt(w), random.nextInt(h), 5 + random.nextInt(10), 5 + random.nextInt(10));
					gifEncoder.addFrame(image);
					image.flush();
				}
			}
			gifEncoder.finish();
			g2.dispose();
		}
		else
		{
			for (int i = 0; i < verifySize; i++)
			{
				g2.setColor(getRandColor(100, 160));
				g2.setFont(getRandomFont(h, type));

				AffineTransform affine = new AffineTransform();
				affine.setToRotation(Math.PI / 4 * rd * (rb ? 1 : -1), (w / verifySize) * i + (h - 4) / 2, h / 2);
				g2.setTransform(affine);
				g2.drawOval(random.nextInt(w), random.nextInt(h), 5 + random.nextInt(10), 5 + random.nextInt(10));
				g2.drawChars(chars, i, 1, ((w - 10) / verifySize) * i + 5, h / 2 + (h - 4) / 2 - 10);
			}

			g2.dispose();
			ImageIO.write(image, "jpg", os);
		}
	}

	/**
	 * 获取随机颜色
	 * 
	 * @param fc
	 * @param bc
	 * @return
	 */
	private static Color getRandColor(int fc, int bc)
	{
		if (fc > 255)
		{
			fc = 255;
		}
		if (bc > 255)
		{
			bc = 255;
		}
		int r = fc + random.nextInt(bc - fc);
		int g = fc + random.nextInt(bc - fc);
		int b = fc + random.nextInt(bc - fc);
		return new Color(r, g, b);
	}

	private static int getRandomIntColor()
	{
		int[] rgb = getRandomRgb();
		int color = 0;
		for (int c : rgb)
		{
			color = color << 8;
			color = color | c;
		}
		return color;
	}

	private static int[] getRandomRgb()
	{
		int[] rgb = new int[3];
		for (int i = 0; i < 3; i++)
		{
			rgb[i] = random.nextInt(255);
		}
		return rgb;
	}

	/**
	 * 随机字体、随机风格、随机大小
	 * 
	 * @param h
	 *            验证码图片高
	 * @return
	 */
	private static Font getRandomFont(int h, String type)
	{
		// 字体
		String name = fontName[random.nextInt(fontName.length)];
		// 字体样式
		int style = fontStyle[random.nextInt(fontStyle.length)];
		// 字体大小
		int size = getRandomFontSize(h);

		if (type.equals("login"))
		{
			return new Font(name, style, size);
		}
		else if (type.equals("coupons"))
		{
			return new Font(name, style, size);
		}
		else if (type.contains("3D"))
		{
			return new ImgFontByte().getFont(size, style);
		}
		else if (type.contains("mix"))
		{
			int flag = random.nextInt(10);
			if (flag > 4)
			{
				return new Font(name, style, size);
			}
			else
			{
				return new ImgFontByte().getFont(size, style);
			}
		}
		else
		{
			return new Font(name, style, size);
		}
	}

	/**
	 * 干扰线按范围获取随机数
	 * 
	 * @return
	 */
	private static int getRandomDrawLine()
	{
		int min = 20;
		int max = 155;
		Random random = new Random();
		return random.nextInt(max) % (max - min + 1) + min;
	}

	/**
	 * 噪点数率按范围获取随机数
	 * 
	 * @return
	 */
	private static float getRandomDrawPoint()
	{
		float min = 0.05f;
		float max = 0.1f;
		return min + ((max - min) * new Random().nextFloat());
	}

	/**
	 * 获取字体大小按范围随机
	 * 
	 * @param h
	 *            验证码图片高
	 * @return
	 */
	private static int getRandomFontSize(int h)
	{
		int min = h - 8;
		// int max = 46;
		Random random = new Random();
		return random.nextInt(11) + min;
	}

	/**
	 * 3D中空字体自定义属性类
	 * 
	 * @author cgtu
	 * @date 2017年5月15日 下午3:27:52
	 */
	static class ImgFontByte
	{
		public Font getFont(int fontSize, int fontStype)
		{
			try
			{
				Font font = baseFont;
				if (baseFont == null)
				{
					font = Font.createFont(Font.TRUETYPE_FONT, new ByteArrayInputStream(imgFontByte.hex2byte(imgFontByte.getFontByteStr())));
				}
				return font.deriveFont(fontStype, fontSize);
			}
			catch (Exception e)
			{
				return new Font("Arial", fontStype, fontSize);
			}
		}

		private byte[] hex2byte(String str)
		{
			if (str == null)
				return null;
			str = str.trim();
			int len = str.length();
			if (len == 0 || len % 2 == 1)
				return null;

			byte[] b = new byte[len / 2];
			try
			{
				for (int i = 0; i < str.length(); i += 2)
				{
					b[i / 2] = (byte) Integer.decode("0x" + str.substring(i, i + 2)).intValue();
				}
				return b;
			}
			catch (Exception e)
			{
				return null;
			}
		}

		// 字体文件的十六进制字符串
		private String getFontByteStr()
		{

			return "0001000000100040000400c04f532f327d8175d4000087740000005650434c5461e3d9fb000087cc00000036636d61709cbc69ab00007a64000005e863767420bb32bf1600000f24000000326670676d8333c24f00000f1000000014676c7966302665d800000fc40000663c68646d7806beef530000806c0000070868656164c6469a91000088040000003668686561068002f40000883c00000024686d7478e8bd09b4000077b0000001ac6b65726efffe00650000804c0000001e6c6f6361001a319600007600000001b06d617870013e049f00008860000000206e616d65a927f7000000010c00000e04706f737469df66ea0000795c0000010670726570eacfd8a800000f580000006b0000001f017a000000000000000001de00000000000000000001001c00520000000000000002000e01de0000000000000003003201ec0000000000000004001c005200000000000000050024021e0000000000000006001a02420000000000000007005c0052000100000000000000ef025c0001000000000001000e028500010000000000020007034b0001000000000003001903520001000000000004000e028500010000000000050012036b0001000000000006000d037d0001000000000007002e0285000300010409000001de00000003000104090001001c00520003000104090002000e01de0003000104090003003201ec0003000104090004001c005200030001040900050024021e0003000104090006001a02420003000104090007005c00520003000104090008002c038a000300010409000900180aa2000300010409000a01300b16000300010409000b004c0a12000300010409000c00440c46000300010409000d076003b6000300010409000e00600a120068007400740070003a002f002f006d0065006d0062006500720073002e0061006f006c002e0063006f006d002f00760072006f006f006d0066006f006e00640065002f007400740066002f0020002d00200041006300740069006f006e0020004a00610063006b0073006f006e00200043006f007000790072006900670068007400200028004300290020003100390039003800200054006f006d0020004d00750072007000680079002000370020002d00200046007200650065002100200042007500740020006e006f007400200074006f0020006200650020007200650073006f006c006400200028006f006e00200043004400200066006f007200200069006e007300740061006e00630065002100290020002d00200049006d0069006700680074006200650054004d00400061006f006c002e0063006f006d0020002d00200033003300390020005300740069006c006c002000480069006c006c002000520064002e0020002d002000480061006d00640065006e002000430054002000300036003500310038002e00310038003300300020002d00200045006c0069006d0069007400610074006500730020004f0064006f00720073002e0020004e006f00740020004100200043006f007600650072002d0055007000210052006500670075006c0061007200460072006f0067003a002000200041006300740069006f006e0020004a00610063006b0073006f006e00200031002e003000460072006f0067003a002000200038002f00320033002f0039003800200031002e00300041006300740069006f006e004a00610063006b0073006f006e687474703a2f2f6d656d626572732e616f6c2e636f6d2f76726f6f6d666f6e64652f7474662f202d20416374696f6e204a61636b736f6e20436f7079726967687420284329203139393820546f6d204d75727068792037202d20467265652120427574206e6f7420746f206265207265736f6c6420286f6e20434420666f7220696e7374616e63652129202d20496d696768746265544d40616f6c2e636f6d202d20333339205374696c6c2048696c6c2052642e202d2048616d64656e2043542030363531382e31383330202d20456c696d697461746573204f646f72732e204e6f74204120436f7665722d557021526567756c617246726f673a2020416374696f6e204a61636b736f6e20312e3046726f673a2020382f32332f393820312e30416374696f6e4a61636b736f6e005b0044006900760069006400650020004200790020005a00650072006f005d00200046006f006e0074007300480065007200650020006900730020007400680065002000730075006d006d0061007200790020006f006600200074006800650020006c006900630065006e0073006500200066006f00720020007400680069007300200066006f006e0074002c0020007700680069006300680020006d006100790020006200650020006f00760065007200720069006400640065006e00200062007900200028006d006f007300740020006c0069006b0065006c007900200076006500720079002000730069006d0069006c0061007200290020006e006500770020006c006900630065006e0073006500730020006100740020007400680065002000550052004c002000620065006c006f0077002e000d000a000d000a004e004f0020004d004f004e004500590020006d00750073007400200065007600650072002000650078006300680061006e00670065002000680061006e0064007300200066006f00720020007400680069007300200066006f006e0074002000660069006c0065002c00200077006900740068006f007500740020004500580050004c00490043004900540020005700520049005400540045004e0020005000450052004d0049005300530049004f004e002000660072006f006d0020007400680065002000640065007300690067006e00650072002e000d000a000d000a00540068006900730020006d00650061006e007300200079006f00750020004d004100590020004e004f0054002000530045004c004c0020005400480049005300200046004f004e00540020006f006e0020006100200066006f006e0074002d0063006f006c006c0065006300740069006f006e002000430044002c0020006e006f0072002000730069006e00670075006c00610072006c00790020006e006f0072002000700061007200740020006f006600200061006e00790020006f0074006800650072002000740079007000650020007000610063006b006100670065002e000d000a000d000a0059006f00750020006d00610079002000640069007300740072006900620075007400650020007400680069007300200066006f006e0074002000660069006c006500200074006f00200061006e0079006f006e006500200079006f0075002000770061006e0074002c0020006100730020006c006f006e006700200061007300200079006f007500200064006f0020006e006f00740020006d006f006400690066007900200069007400200061006e006400200064006f0020006e006f0074002000630068006100720067006500200061006e00790020006d006f006e006500790020006f0072002000730065007200760069006300650073002e000d000a000d000a0059006f0075002000630061006e00200075007300650020007400680069007300200066006f006e007400200069006e0020006e006f006e0063006f006d006d00650072006300690061006c0020006100700070006c00690063006100740069006f006e007300200061006e006400200077006500620073006900740065007300200066007200650065006c007900200061006e006400200077006900740068006f007500740020007400680065002000640065007300690067006e00650072002700730020007000650072006d0069007300730069006f006e002e000d000a000d000a0059006f0075002000630061006e00200075007300650020007400680069007300200066006f006e007400200074006f002000630072006500610074006500200063006f006d006d00650072006300690061006c002000700072006f006400750063007400730020006f00720020007700650062002000730069007400650073002c00200062007500740020007700680065006e00200061007000700072006f00700072006900610074006500200049002700640020006c006f0076006500200066006f007200200079006f007500200074006f002000730065006e00640020006d00650020006100200063006f006d0070006c0069006d0065006e007400610072007900200063006f007000790020006f006600200074006800650020006900740065006d00200079006f0075002000750073006500200069007400200069006e002e000d000a000d000a0046006f00720020007400680065002000660075006c006c0020006c006900630065006e0073006500200061006e006400200075007000640061007400650073003a000d000a000d000a0068007400740070003a002f002f006d0065006d0062006500720073002e0061006f006c002e0063006f006d002f00760072006f006f006d0066006f006e00640065002f007400740066002f006c006500670061006c002e00680074006d006c000d000a000d000a004d00610069006c0069006e006700200061006400640072006500730073003a000d000a000d000a0054006f006d0020004d0075007200700068007900200037000d000a0033003300390020005300740069006c006c002000480069006c006c002000520064000d000a00480061006d00640065006e002000430054002000300036003500310038002e0031003800330030000d000a005500530041000d000a004300720065006100740065006400200062007900200054006f006d0020004d0075007200700068007900200037002e000d000a000d000a005400680069007300200069007300200061006e00200075006e006500760065006e00200073006f007200740020006f006600200033004400200061006300740069006f006e00200066006f006e0074002e0020004c006f006f006b002000610074002000690074002e000d000a000d000a005b0044006900760069006400650020004200790020005a00650072006f005d00200066006f006e00740073003a000d000a0068007400740070003a002f002f006d0065006d0062006500720073002e0061006f006c002e0063006f006d002f00760072006f006f006d0066006f006e00640065002f007400740066002f000d000a0068007400740070003a002f002f006d0065006d0062006500720073002e0061006f006c002e0063006f006d002f0069006d0069006700680074006200650074006d002f4001002c764520b003254523616818236860442d000b030900210018001b0023001c009b003d0063012d0169011001d800b801b200de00f901d55a725a725a725a72000400060000401f1212111110100f0f0e0e0d0d0c0c0b0b0a0a090908080707060601010000018db801ff85456844456844456844456844456844456844456844456844456844456844456844456844456844456844456844b3030246002bb3050446002bb10202456844b10404456844000002003f000001b6032000030007005640200108084009020704020100060502030205040500070605010201030000010046762f3718003f3c2f3c10fd3c10fd3c012f3cfd3c2f3cfd3c003130014968b900000008496861b0405258381137b90008ffc0385933112111253311233f0177fec7fafa0320fce03f02a300060024001000fd03060028003500480055005e006900914044016a6a406b295d5a3d3a5c56095303175f3b3a021b0029022f65032f3603034642403f3d05450304034a4902070b05495549050d68052c4f04233204612c002301011746762f3718003f3f2ffd10fd10fd2ffd3c10fd012ffd3c2f3cfd173c10fd2ffd10fd3c2ffd3c3c2ffd2e2e2e002e2e2e2e3130014968b90017006a496861b0405258381137b9006affc038591314061d01140607160706070623222726272627262726351437363534373637363736333217161716131406232226353436333217160334272627111633143d01343534263d013436031134262726270607061514131736272635160717362734232207061514163332fb0705010401050c34330d02180a0103050f0c01010d072d0e2620030412190d0102361a1e3a30222818161c020310090802062b04010103234a03258a01070a03090a0c202218131526122a02a203640289012a0a3e66060705010f15041e43958401072a2729180603030103020a0d2802fd961e2d392022301f1b021d19070e1afe000506254412291440015e0366fe5101db031d04010204041f373cfe988e15070a01320c07121a390e1119122400ffff001001aa026b03550027000ffffd024f0007000f0140024c0006002e0045021f02a7002500e500e900ef00f901020130408101fdf1f0eae9e7e6e3d3d0cbc9c3bfb8b4afacaaa89b997c6e6a5d5b57504d3a3930241d18110efffaf0eceae8e6d5cecbc6c4bdb9b1afa593898682807674717066655f322a26221b1a090807001f030514020305f502903a029059029035022d530290dc053e0b05552a2804ee553e04f6f54704d74a4404ded77a9e7e019346762f3718002f2f2fb901000004fdb801013c2f3cfd3c10fd2f3cfd2f3cfd3c10fd10fd012ffd2ffd10fd10fdb801003c10fd2f3cfd10fd2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e313001b9010400264968b900930103496861b0405258b90103004038b801031137b90103ffc03859011406073615140717151423222623220623222635343736333217071617363534263534371637142322271e01151406232235343635342e0127231407062322272627262322062322262322062322262322061514173633321514232235061514171617161d0116171617363736333217150622071615140706232227061726353437262726273e0135342627262726372e01353437363736373233323633321716171e011514062322270623222623161514062322272627071617161514232227262707161514062322271416151423222623220716333236373633321736373e013332162f01071f01060716333227230607061733363736132e012322071533320213100101140706173f030d370e040b39261f05051315290f041c030c440a0b010f340a0d2b1302062c16102a270a0104010105110405100404090302260b040a180a080f12030210030d090b5235290d1a12120827062413091813170f0b0d0713061a4b3f22031c0a0713033105081026231a0f0a03190a2a0a2d3f471e090f0b04050b060808110f150b040218031a0a08090d1407150d0e0e200b040229050e06111d431c5925030d02111c331014270618112e1b560704082c062b100409980d0216100110020e144c020c04040f0c060127021102031b140f040802260b0a050e080501130b1716070410050d14029830010724030a2d10091d040322092d250c091d0d170104040d190e040d0a0e0f0f02050a433a0a150e180303110c0f030422110f04141101140a081213130c130a0909100d111c02110f0d071480192708100d1a3732150d02070e0f1406260d050a0b0b250e0f040b17030d0208090d030f17101002120b050a1b030e03152543160e010a190106021613620f010e630434052b05110d0f0b0f17fea80109071200ffff002e0045021f02a7000600060000ffff002e0045021f02a7000600060000ffff002e0045021f02a7000600060000ffff0013019c012b03440007000f0000023e00020018ffdc010f030200220030004a40190131314032002923292318001e02272d020c0b031401010b46762f3718003f2f012f3cfd2ffd2e2e2e2e002e2e3130014968b9000b0031496861b0405258381137b90031ffc0385925140623222726272627263d0114373637363736371617161514070607061514171e010726272635343706070615141716010f290c04253a1e141914070c1e283c08100d0c130e1302112f02215b29101944371f1b171e20063e1926382455442f60053a5a49631a060809090d061b384a0a6059a3780638037e42695e899c2f695858754c6200020013fff900f303150018002600494019012727402800211d211d120a1902001f030c14010800010a46762f3718003f3f012ffd2ffd2e2e2e2e002e2e3130014968b9000a0027496861b0405258381137b90027ffc0385913140706070607062322273635342726272635343716171e010734272627161514073637363736f30809072956241010054a1a0212100b05184666411d2035363c101a22171501ad1c5155147f431c10b981ae970d3a36050605011236c8535156612da1f483a10d1c3574650000010029023000e102e4002f006140260130304031002b201f1d23201704000e271b0e1f1402061f022a272d05090d05252511011b46762f3718002f2f10fd2ffd012f3cfd2ffd10fd10fd2e2e2e2e002e2e2e2e3130014968b9001b0030496861b0405258381137b90030ffc03859131407060716151406232227262706070623222635343637262726353433321733342635343332151406151736333216e1120d0d260d0a09130d0c08080c08081614031312161110250606101f02041b08051902920a04020125050b17140e0e0f0f1717080a140b030205131f1308210812180413050613250005001800dc0210030c00300038005e00690072009b404401737340740070665a5150494740351f076e6a625c5b4b4745443e3b39312b291817090700555402354e03695f6261051c57050c383105046a040c54046c0c2301011746762f3718003f2f2ffd10fd2ffd3c10fd2ffd3c012f3cfd2ffd3c2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e3130014968b900170073496861b0405258381137b90073ffc03859011407062322262316070e012322272627263506272e013d0134373633321633363736333216171e01151407161716171607262726271e0133372635343635262706070627170607363332151406151417333236333534333216333735343605262b011617163337363517262322071617323602100c0f0d1349130101042b3e380a2505021d36072c1809111042110207050d0a89030c250d272810082741032c232218212e09901129520408068b0403010e3943050412103f10191552150206fed71f341716040c1c2602b0191e0453070e145101e21a3943134b081d1306341908500208033e07512c050105535c0a1a0309370c1d3c0809040e4477200906062510af1c12196118060d525a0a04040a4d022d124412100907641f1501150f3d4d081d030801060eb925070b16030000030013ff5e012b0106001d003600460067402901474740481a37313d312f25230a042928020f1e02383733023b43021a3f0500232205131300010f46762f3718002f2f10fd3c10fd012ffd2ffd2f3cfd2ffd3c2e2e2e2e2e2e2e002e2e3130014968b9000f0047496861b0405258381137b90047ffc03859172227302736373637363726272e01353437363332171e01171615140706132627262b01161514061d0116171617161514073635342726371514161514071633323736353427268511171e010b0808120c14220d230c061d7724054102062d3103070509661f02050e161b08232e6a04041f098612023a27230601a21f2d080d0a09191d010a0a481176100a170374071c324a3b4001244a0b0f0406041004580602040209312e40295b0e161b10070c2f0c73351536323c2413020003003c0109021d01e100200038004f007a403401505040511f48443f3e4e432c3821021f2d0210323105072e2d050c04054b2505183836053b4b040722212a0418141b0c011046762f3718002f2f3c2ffd3c3c2ffd2ffd3c10fd10fd10fd3c10fd3c012ffd2ffd3c2e2e2e002e2e2e2e3130014968b900100050496861b0405258381137b90050ffc03859002322062322262322072206232227263534373617321716333236333217161514272322062322262326232207173332363b0132373637361f01262322062b0122070623173637363332163332363326020e2e0d350d1144112b590513051631070b21942c44410c071e071c100c440e081e080b26092d2c6649062a030c037e1120250e104a041123185e1682070c0f041a08123052114512103d0f060112030405054952210b040d010201041e171d67970808020a5204050601010123030c02021c03030404040b0000030012000500f200c50012001a00270051401e0128284029001715171b020013030021020a2505051e040d0d0500010a46762f3718003f2f10fd10fd012ffd2ffd10fd2e002e2e3130014968b9000a0028496861b0405258381137b90028ffc038593714070e012322262726353436333217161716073427160736373627342623220615141716333236f21e043a06134d0b132f2323350e190f1a160c150c0b082e261b161d11131f151c5e321a030a2b0e171d23301f0716151d200c1e270303042517291c161a1519260003002b0051015d02dc001b002300320058401e0133334034002d25222b24201c1200292b06141212141e0419190f011246762f3718002f2f10fd01872e0ec40efc0ec4012e2e2e2e2e2e002e2e2e3130014968b900120033496861b0405258381137b90033ffc03859011407060706070607060716070e0123222635341336373e013332162726233207163332072706070607060716173637363736015d0c0c011b1b1e0e0c0d010503350e1044551e39052a0c103b1d1410031923030a1e1f1a1e0e181d3c0f1f2c1c072c1f02a901181b034848553e337014270a16230e15011f68910c212503130d150a0f3a5e214366ca070fc35616765600000600060012023c0303001b0025003d004d005c006700794035016868406900645e241e66645d231e5702484f4e023e1c030034020c2602206202483a050853054c2e041259044412010800010c46762f3718003f3f2ffd10fd2ffd10fd012ffd2ffd2ffd2ffd2ffd3c10fd2e2e2e2e2e002e2e2e2e3130014968b9000c0068496861b0405258381137b90068ffc038590114070607060706232227263534373637363332171617161716171607342716151406151736273427262726272623220706070615141716171633323736271407060706232227263534373633320335342726232207061514333237362f01060706151417263534023c0508010e3a3e54a05b5328336b250279450d192f1113070b1a39220818073e050701073c3f51ad1d010b09192623344f833324470d1114193850261c1b2341962a120e0836241b5425141093101e08031802012a0f162005553a3f746aa57f59701d093c0f1d36222743624ce54e8969124713022b5d1b29380c534044d70d221d1278395926376447b731556513196e4e634b3f52fea3a70f490b6a5246893025f0020c1f0d33452e18165f00000400290006020f030c00450059008a0093009340420194944095008e716d645e5c59513e211f917e6b4f4e47463c170f260e1a00025a79031a75031d4b03385a038e8f6003586203544005049183050b2f010b00010f46762f3718003f3f10fd3c2ffd012ffd2ffd2f3cfd2ffd2ffd2ffd10fd10fd2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e3130014968b9000f0094496861b0405258381137b90094ffc038592514070623220607060706072227263534373637363336353426353436353427060726272e01353437363736373e01333217161716151416151407061716173633321716171627351427263534263d0134271406151417161f0226270623222702372623220607060706071617363736333017161514070607160f010607161732163332373637363736373426270714173426020f140a24081e05204033830842190b043c380e04030903040d12240f3a252c02080e08920f0e1815040802020201010631051108240903970202071802050504115d04042b3d17020c011209115e0a1515191712261011180b0a0c0405010203086321070e030d0421334b092e2d364e10020117044a1c080407010206070549431f0e0c03070703110b2b0319651a11110808081308490e073b46031114020d252211275d196f19102620131c1905061e2e13600d09211c59208b1f5903220e3d0f4f745e5f0a7a22420735011bc7040c0524252b1a182e101118020a821a2a370d2546060c011e3b020609010203043c080f034b10140e3b000500210022024702f60040004a00870092009b00ae4054019c9c409d009b918c6c49209377694b46368802715802001a027199030f8e032441037160032f850205030744056e1c056e830509807e7c037b050c3d054b4b043a38363a0497545250044e63042c2c09012446762f3718002f2f10fd2f173cfd3c3c10fd10fd2ffd173c10fd2ffd10fd012f3c3cfd2ffd2ffd2ffd2ffd10fd2ffd10fd2e2e2e2e2e2e002e2e2e2e2e2e3130014968b90024009c496861b0405258381137b9009cffc038592514061514151615142322242322263534373637363736373e013534232207060734272635343e01373637363332161514060706070607323316333236333217160334262322073216073613220623222326232223262322353437363736373635342623220706070615161f013633321615140706070607141716173332173233321633323f01360134272627061514161736132627262706353017024708012d46feec4509321c072d1329233c05102a20343b17282008060c27544a44596c2f2612232e0a111f220e1042110d151be418090611111a0310c51556150b16160b0a12120a19394006291c165d4e373c19313a0f210b7f29202d841b251e1e080c020c1527271520802026230501fe471110070a22060a120305060b1525fb0c320b070e0d07670487121f22082a162a17370628081414160401372d050122210d2c1b18725a296233171b250a0108060801120911121c1016fee90501010f072f35062f48370f4f620f06181b0e1c38043a2f203e6214251f1e1c2c3b0c0106014615015906201d09200604360814fe460912264b2f016e00040010000501ed0313003f0048007b00850099404601868640873c807c6f5b5a4340277e716458574d423a2d1d0951023678023c13026223026a6247023684023c6667056d0d050073050025055e10056d55042f2f010000012d46762f3718003f3f10fd2ffd2ffd10fd10fd10fd3c012ffd2ffd2f3cfd10fd10fd10fd2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e3130014968b9002d0086496861b0405258381137b90086ffc03859372227262726272e01273637363332163332363534272627262726272635343736373635342322072627262726273633321617161716151407060716151407061306071736373635340726272635343736353427262322071534173332363332171615140716173736161514062332270607163332373e013534272617060716333237363534b02208130e060f09110111101d0d0b2c0b1321341608030b010604131c1c262a1e4e0b1a1904050f56693276221612151917236a6b527a045412191e1c65111015125d4337435b420d0410401032222e76050a1320343b2501400f1d2e1c5e37284c191c5306370414110d0b0501051208150c190d2324380e110f1f032b1c0d3e05130e0a07090c0b141218200325220d12592b2b21151e23192b302c1f578375362802796d4905013d371f11bf0102040f0212584e3c231c1a0802440f11152f5024244901012f21243a0c1d3d141811702b2a2a2fa2234e192922161200000500160013022a030b00400049007b008a009400974043019595409600908b857c7a715f53514841342e03908b857c6f635b4a462d2b18150057023d69021c4102394d4c033d5003390d040f2a04267605052601100f00011c46762f3718003f3c3f2ffd10fd10fd012ffd2ffd3c10fd2ffd10fd2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b9001c0095496861b0405258381137b90095ffc03859011406072623220706070607060706072306272e01373e013726272635343736373637363736373217161f010607173637363736313216171615140706071617162706070e01151617361726273534363727062322262235343736372627262306070607161716171615140706070607163336373e01333217163336010e010706310607060736373637361306070e01073e013736022a300c0a300506060c0202042007101418383f1401043203383756121b0209090f0b172f111a151603101e40071603211e0a6803060e1202171722bf0b100513070a0eb818311c015c27100156321216040518110b0d1b1120205149260c0d0f0209205a19051f0307100e161f040bfe8f130d03050a120d14080c0723219a1720092e010e1e081801b61c6e02042f2a441d1d1916070d01090a120f25d2150b0c151924334d0828273d0811220806060c41820c2840060e0d1103060a1f2f3e0e0b0a11c1030c084c0a020627830b19051e6d190c9c1e0f23424f17010504305f31620a0e0c0f050c072c3306407f0c35c6102305081c014b0f1814201c372c4c040a087c75feb50b160dd917050b0a7100050018000d02510300003b0049007c0088009800974044019999409a00908b8783817b5f4f443c291f049089817461534a3c1b08002c02574424025769020e7d035778050606044795041485042622045b65048e32011400011b46762f3718003f3f2ffd2ffd2ffd10fd2ffd10fd012ffd2ffd10fd3c10fd2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b9001b0099496861b0405258381137b90099ffc0385901140e0107262706071617161716151406070e0123222726272e013534373637321633323534232206232226353436373637131617161716171617160734272627262726271e013332163726272e012706070615161716151407062322272627060716171633323736353426352627262726272635343e01333216333603342726271617363332173617262322062322271e0117163332373602511f0e10438f070319313c272227301c6a2227464e160916111106077d233a600a24090d320801030954376c16a2161e0405054509072c1e1d264d0a16160f854236353e6163052a26652e55242025222d2726100b51081c4364414a111a241c3a191a281d06092baf2c09da4d136501113c04541c035a06060368215d6f05164f461e23334002520e680d041e20171b050c0f463e433c4b2415230f1214083f0f07302d0b2c1d3407570f041903172f010f020a0328040d052c2778141b070704040c18111f39c30f0f100a08377b6f46010f1a4c2217140c0c0c13302603082d34600f27082b120d0602020409088f0a3826feb03614050b05240a4a08a112292f1d1a0f0e0f13000007001800170214030e00260030004e005900680074007f00ad40510180804081257a75746f6e6c5a5440332d7e6f6e5854352f2d2c1e13023d4b022578025d46020a74693d026528026572050461054f28270510560404181a042f311e04204f044848045210010400010a46762f3718003f3f2ffd10fd2ffd3c2ffd3c10fd10fd3c10fd10fd012ffd10fd3c3c2ffd2ffd2ffd10fd2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e3130014968b9000a0080496861b0405258381137b90080ffc03859250607062322272627263534373637363332161514070e0123262322070607363332171e01151403232207061d0136372607220726353437363736373635342f0106070607061514333236353427260322062322271633323726272226353437363332171615140706373426232207313236333217072206071633323736353401ea1c36392c57494423142921585c691623080309070a02912106074f2d3a212b40910e1526293f3b063756651510151c4c6d0204071512b14121f04566191c48081d07453541440c36146f23433e33392a1e213a2d4322143015071d07341c522839051716292835812720233a36543155358267464932175a100703027113251d0a0c5c2e6d01cc111210031f010ed44c022314374e20590e210210180307031ed2692ef76c46501e21fea7051129120b4e3d2334211b15182a4120188913171b0517042b25160d101d2c000005000c0012023102ec002c00390044006b00720093403c0173734074006f6c665b56554b49413a362f19156f6d6c645e533e3a36312f1f151166680806040406666808070606074502004d0425250b00011f46762f3718003f2f10fd012ffd872e0ec40efc0ec4872e0ec40efc0ec4012e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b9001f0073496861b0405258381137b90073ffc038590114070607060f0106070607262726272635343736372207060726272e023534373637363332171e0217162716373627263534262716171607060706071e013332373637342726272607062322070607060716073332373e013332161514070607060716173637363736013534271417160231201a1a3425540d1c0513054b340604524b19253a401920081d0509060abcae2e380e06220803041f0a020202030c0c020601d3314d720d05200509b806cc0706060d16190a23170d94613f0d01082fb006220707101f1c0929651b3d407f181826feed68012502561f37282958459f1c36080703251a0928120e9f922a0c0d021a061a0f7e0d0a05080f0d0603250d2925060a04030f1104171a08102610410a070b0206191f034a151e1a19010102020109060a482e19010a0e06073e3a1045d1132871e52c2c45fdd0090f3c081112000a0003000c0214031600190021002c00500060006f007b0088009400a3000025062322272635343726353436333217161716151407161514060316151407363534031e01151407163534272607262726373e01353426232207061514171615140706070615141716333237363736353427222726353437363332171615140706032227263534373633321716151406032206151416333237363534270e011514173534263534372613220615141633323635342627220706151417263534373637342601a0454a2536b331257a690a4e612a333b474828351d2e461b280414161a190a38020a20288a5a4d312e24070a0f011d3a3c6b3930381519ce362b2e1b20363b211f171b1d462b31161c2e772414422e20291a231e130f8f0e161f05330848233122271e321d801b0f0b2509141218182a1e1239ca6f312b4969781c232d37616c264762306a0275494c2941105071fef11c5e271d0d012f2b323a36103f0906154b2759813c384f3d2a090509090d0227576b424516192e321f2c9c25263538272d29253c2e262efec61f2444322b345a301f2b4401ee3222241e231d24322c0d3d16211f010616063b2715fea83624271e331e292534271d233c1918191b201d100d160006000c000b01ed030a003300570076008c009600a400b6405501a5a540a600a0957f706f4436a3a09e97918d8577737269584a48403e3c2002001a036f1e036f65032734030446030d4d030a07545250030444030d99052b8e8d058b72050f2120056761042b2b01100f00012746762f3718003f3c3f10fd2ffd3c10fd2ffd3c10fd012ffd2ffd3c3c2f3cfd10fd10fd2ffd2ffd10fd2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e3130014968b9002700a5496861b0405258381137b900a5ffc0385901141506151406151c011514061514072322272627262726272635343736373635232227262726353437363332161716171617160730270615140706070617160714171617363534373435343635343635342726373637362f012627262332272623220706151433321514070607060733161735343736071407061506070623302726272635343736373633320723220615141716173627262322070e011514173426353401ed0107060e3d0d2327060a0b0b0b0c0303010a1b1d353e2e2c18327d424b272910060b1c15181203040101030207080e0a020106070201010103033206081b160e0d40193a6d2d16e72203040103060b2346090d6205060101030c30292a3111102f11432c1d2d1126213108014f0d0b07080419240302751b33321a115310174b170d3c0d771604050305100c0b0f0c0e161a09bf0a0e123f3b3a1e38720b0508140b16360d347f7f1320260d1c5d4b2d05080d0e411b0f2222101a591b0e460e0b271e140714116405020605090464321a8c19121c25084b940505cc5483c52715202d0914141d0e0a0a1125172b270904432f132004060517651305034108131003090337ffff000f000500f2022b00260011000000070011fffd0165ffff0013ff5e012b02540026000f0000000700110007018fffff0018ffdc010f03020006000b0000ffff003c00be021d027700270010000000960006001000b5ffff0013fff900f303150006000c000000070001000501d90314003b00460052005e0083008d009900a9404e019a9a409b00968a8474695b554f490c8e8a84807a7672534d4925221608046a69024b5b5d02705a5902313c02421c03706203314203934703001e056d290564675f043645049140003601013146762f3718003f3f2ffd10fd2f3cfd2ffd012ffd2ffd2ffd2ffd10fd10fd3c10fd3c2ffd3c2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e3130014968b90031009a496861b0405258381137b9009affc03859011407060714171615300706232227262726272627263534373637363534232207060714161514070623222726272627263534373e0133321716171603140706232235343633321334271615140716173637362526232207061d0117263534372206151433323633161735343633321615140716173637262726353436373e01353427261326272627262716171607342623221514163332373601d9161924100a04421c0e141705080606041e1c23121d222d1b1513030509392606151601050474193c284c3a1616351e0f11196c241b66050e03610c131c1a17fef5050b0d0b0909015f5c751a0412040a13562f2b366905271a33021817120918392a2e470606070c060e0a091102170e271611100b0a022332383d1904412a1c0d1609080b0d252c0c593003161b172324301b152f0a280b1e0402020a30040e0a0b8d400e102e112048fddf1a15184b1b230194242210106a55090b01493e790316120e4707080948ae7e5b1d020402432e41342b534138aa0309084d4802090a040f681d5c3338fdeb1e1d23160407242437900c1227111a1310ffff002e0045021f02a700060006000000060000001502a8030d003f006200730080008c00930094403f01949440950092908b8577655f5b4f4e410f928d87817b746e635340004a484c0627252527130221110257564c02212f043370050a7d051b33011b00012146762f3718003f3f10fd2ffd10fd012ffd2f3cfd10fd872e0ec40efc0ec40ec4012e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e3130014968b900210094496861b0405258381137b90094ffc038592514070607060706070623222627262706071615140706070607062322272627263534373637361336373637363736373637363332161716171617161716171627030e01070607060706070615141733323736373426313534373633321716173637361726232207060706070e01071633323736052e0123220706071633323736131407062322353437361716072e012706153602a8101a331c36061914041346010819182413070b2402094b160b30260219140d0d034b0d17070d191f16170e2620040a36040f1d161e23121b1c276ece1c841d12070d0a062f27040c163e3214053d370c15130e0d17403756190205212a0c192b0a1403270b04404ffe9907140404341b2f2a04062c31600a470d1519201e0f200310030609de0e080814101a020d0a520d4555050d823820070d18050828211b021513274128280b0138352c04070d0502030309081b05263f2a48522536364d4001c40d150f372646271bb5920d07041f1a0e0e3c700e1b194f42420a13102f220f1205050b040909271f276205141a0d0c23161801bb13041e19382c11010f45061906210e03000009001e000502310309002d00510061007300830092009c00a800b1000001140706071617161514232227262726353437363736373637363736373637363736333217161716171617161716073427262726272623060706070607061516333236373e013534272627263534373637360326272627262715141617161716333213140623222e0135343637363332171617160314062322263534373e013332171e0137342726270e010732163332373e01273427060732173637361134262b010615141716333227342627061514173602311e2131170501c2b031060c0b23151402030911010d0916020204090212276415161e1a071b1f072036131621437f0d16291c0a191b0802a35b0c0f03253f040d4007262f1827c80f2a33193f2d0b031942343d0d9643340c580e2a080b0f3151120801603b1b145b18020f07050635553c1c181c0518050515031411092772110d160f0a040c0b1f120d1013100922510a01140f1001dc36383e0d1e22082aac510a322f070c8e53520d1820420818152907060b04011c06060a10052428145c042a343e12231801588d325e65250721700601034b2a0a0f361e040b0713181a2afe5f0f0b0e0e241e0805240426120f01ff3637160c0b0d990b10360c2905feb41f33380f0a730915050456e718110f021042100303021b52042b2d6403112c25fe890e2331030908066a041c044711050d4a00000500170067022902f7002b0035003c0049006d00804037016e6e406f004c463f3a36332f27594a463d3b3a36006202082c02131e02484202535702316a05022120054e5a59050f02110f01010846762f3718003f3c2f10fd3c2ffd3c10fd012ffd2ffd2ffd2ffd2ffd2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e3130014968b90008006e496861b0405258381137b9006effc0385925062322272627263534373e013736333233161514070e020706070e01151417333237363736333216171603342627060716173436132627262715140326232206151417161726353413262706232226272635343736373637232207060706070615141716171617163332373602294759b98614110e0b11814661400d094804061015422c1c0e1a1f06292b0715120a0b4703064b0b0501060b07052e0203021c911a1b2831110a210cda060735771c4a08075940640207226638512a090f1a0f1010274a42430c2b2787208f16463e27392f477e080b2b12202e3f0506160d170b2f11411d050105044d0c1c01d2060c06244706091141fe191919141b104201550e3f29241c11221b2b54fee12345124e1e1a1a552e220824471219450b163158213c42142e1b180d0c000006000b000d02410313001900330043005a0063006f007c40330170704071006b67605b564a3c206b604e3c34280a242606100e0e101a02006402445c5b02444204062a043812010600010a46762f3718003f3f2ffd10fd012ffd3c10fd2ffd872e0ec40efc0ec4012e2e2e2e2e2e2e002e2e2e2e2e2e2e2e3130014968b9000a0070496861b0405258381137b90070ffc0385901060706070627262726353437363736373633321716171617162734272627262306070607060706071633323736373637363736032627262726272627141716171633321314070607062322272635343736373637363332161716073534272627161716173426270607060736373e01023e0624372e3f7a9b1c34231516111518185151b42109090932322c624a4b030c0d030a17163963662e270e3f36180c130cb71111102346203e2a110b0d234b6d8809010638921d18224a070e0c010c0f0c71161723260d420d113e0d2e2312121813162a233d01615f4263212f0302335d06117f5050447681224e962828313067423b2d231520280d386e61d7370f05201c321a5137fea30a0b0802040409170220140814017a08290d187e070b1506dc1c383301254d272a351235250e2c1f3d20732644113f3f522501090d410000030007000a0225031b00370068007d0072402e017e7e407f007d7165644946453b3a333126256958524e43382f231c003f02287303125554041818010600011246762f3718003f3f10fd3c012ffd2ffd2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b90012007e496861b0405258381137b9007effc038592514070e0104232227262726272627262726353436373624333217161514060706070607161737161706070e010706153017363332171e0127263505272e01353437363726272322062322273426353437363726352322040716171617141716171617161533323736053427262726272627061514171615161716171617022506070afe9207180805091d150e0e020b091d0e1a013f1d130b081207214a531d05059b030e080409371b2a09a642100d04142908ff00090119422a2a0406071372040a02130804ee061905fee51b02060d16140206010f0a0727788efeaf0c100213131a050d080b13050d11090fba0d1c21085e090e163f9770710b3025161345070d4b32241e092e04140f120d221114244725080e09040609462d080361082d1432060e92010d0c070715291a05018a030904024225264c081b354b98025e152808291f11242c69172c360c6c6b90422109122b3a04801f55492447000006001b003402650302002f003a0044004b006d007b00854039017c7c407d00787064635e5b4a49473f3b3932756e68634c494542350a7202243003003c3b031051022457051e2b04505005281e2801012446762f3718003f2f10fd10fd10fd012ffd2ffd3c2ffd10fd2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b90024007c496861b0405258381137b9007cffc03859011607063106272207140716171617161514070e022306070607062206232227262726353412363332163320171617071427140615141716173603353426271606151416273427060733362526272623030616153216333637363332163332363336352306272627363736053601302706070e0115141617363736026401070a35b80248022827250f010309433f01090d0b0f081020093c160f1211350a13061b07011b8b0a1e1b0e090506010bc3110101040d7b1004051207011369698552310103114210061403100924090e390e030914353b07080e2f010207feda170509010d0b010a15080292132034090206080e05050a3004113c16050404245b522c1a05070527241226022d120420033b09011c0f3f0a0405080145fef638041502081a060e139f04161f1a21900b0a0dfdbb030e030261b50e0403072f010909086f030c0912fede1c38720d3d10031a03499235000006001e002302ae02ea003f00500058008e0092009f00a7404d01a0a040a1009e9a92908f574d27269a93908f6555514b402f3302695a59023f002b026e7978022383021767102d95106b53053b4404787638046161043d3b2d046b7d041f8704981d0f011746762f3718002f2f2ffd2ffd2ffd2f3cfd10fd2f3cfd10fd10fd10fd012ffd2ffd3c2ffd2f3cfd3c2ffd2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e3130014968b9001700a0496861b0405258381137b900a0ffc038590114070e01232207060706070607062322272e01272e0135343736373633321716171615140f01270607061514333237262726353436353633321633323316172726272623220706070e0115141736373613262322071617363f01342635062726232207060716333215142322263534373637363736333217353427262726070607061514171633323e01373637360723161f0126232206232227161716333202ae03062709130e090a08071d3d2b5138412a6e17070f2126515c6002593a1401071107883a60743b0b1b010e02117a0921072a29072bb90f070b181f404808010f09304018fb0c08152e0812160f0206172428121656020109171169477034385718181e130d0b040e26372c6c48431846ae38473d030106067b13050a490e08155417374f133930242e012f182c0104100c1914143f1611180f60270d46116553624952021725021b144f0802182036707418210215140f3a0e1905022cc6150507151714040f0516092e1206fecd1f070b15093a2f0717050104050c173402196461465b4b5010060507021614290402020d21746d774c2871184d23181f0911070db7071016110b0a00050027003c02aa02dd003f0050005a00840090008140360191914092008f877c7672605d59534b43393412108b857a7870685b32180e44020b0b02474003002e02515702646a05272705011846762f3718002f2f10fd012ffd2ffd2ffd2ffd10fd2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b900180091496861b0405258381137b90091ffc038590114020706232227262726353436352627060726272e023534373637363736373637363f012633321716171e011514070607161736373e0133321632161716073426270316061514171617363736373625262706070607161736252627060f0126232235343736372623220706070615162336373633321706071633323637363736373605342706070615141716173602aa510c1413123a3f071c15113f1832134b4e0917060701091419070405070e09083355160a1c0910090b012629060b0a0e191551291110101b10044a010f05070116130e0f0cfecd09100a090d010b170b011f2a540912045830450e0a0940180b1216212373060a11150e7d4c0e17460d1f0b070504031524fec2210913140907083901e819feb61b2e0809064f101450130808448902171811480a0c151a083b5e77211a1a1e1204010904290c1511101f280703070d4b440b0b0d534d1f0e5908fe8f0a24050a1217053557474829c5101617253607030520470607376e040f12183c2c2b050540a0a7351f2040651449940a182e2020104d86c80a27123d400e0e130f10ac000005000d0007024a0317003a006c00760083008d009c4041018e8e408f008c88827b76716b5856504240363216128a847c736d6968544e4a2c261a0e0a0c0e0668666668505206201e1e203c3b030077026222010600011a46762f3718003f3f012ffd2ffd3c872e0ec40efc0ec4872e0ec40efc0ec4012e2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b9001a008e496861b0405258381137b9008effc038592514070607060726272627343736372627262706070623222726273637363736373633321716151406070e01071617161716173637363330171e010735342726270623222726272627262734373637262706070607161736333217161716171617161514070607060715341736033427263506071416171326272627071617161716173607262726350615141736024a20497353960e0d0b0a21363e100c0a0a0c413d03070a07080a17082568bc43040d100d14050f3f0f040e12040412052c20110e081a1c0908085713120b0605080e0c2140272802123c7b07b2050b463a0e060a080506031b141c17162a3a1f80f1070b04050e01e8021a1c051102080b0204180b6e010e150b2205a50a3f151611191529202011470f0c3f584d4c010c0a35162c13230a05112a0f352f130a4203060b0622354512244a010a08040d691106151e1819133b26261933376f0f0e080744140f1a011d1b36120a10342625125b452617080403080d0804661901df0e182501060c045702fed43a626c2e151422290d1ca302b90e2331012103044e05000004000f001d027703150030003a0048007300a7404b0174744075005c514f4e4a413631232118604c4b494741362813064a494a4b062c29292c494a064a4b37363637700200323103003b03086803451d025562050e1b0547582c010e00011346762f3718003f3f2f3cfd10fd012ffd2ffd2ffd2ffd3c10fd872e0ec408fc0ec4872e0ec40efc08c4012e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e3130014968b900130074496861b0405258381137b90074ffc038590114070607060716151407060706232226272635343e023330163332353427262706072e0327373624333216171607353427262717161716033426272e012716171615140736032705151417333633321716151406232227262706070607163332373637363534272627262726353437360277030e261d1c3d3e32664a2d397a1e173e113b06801c3012111211360d390f1f01090e018c0d083804091b0208290603090a19310a07140a131b1c142a0d16fe9223065f0a1f241e493d292e262608120c0d3a92254944212b181414010c0b3622027108090c0d0909c7625f372c1a133d2f2303084a0a186e4e384c40410119032b1873100d064b390a1643162806122719192e0afe7f1dfc100a0a0632898c2f1c2c3101d2684d071752219c88373a3b211d1d0318111071100e19213c3b685151072825020d0c07000400250013026802fd002b006000690074007f40360175754076006c67635f5c503f3b1e1c0602706a6545383426231208065602005902002c020061030072040c43041616010c00011246762f3718003f3f10fd10fd012ffd10fd10fd10fd2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e3130014968b900120075496861b0405258381137b90075ffc03859251407222726271615140e0123222627260235343e0133221716171617363332161716151406071617161716273427262722272635343736372e0127060706072627262706071617161716171e0117161736373637363534263534363332161736173427060716173e01072623220706071633323602685721241c1b130d98080d3c08067f0b850e03151427111e3c0e0e78061440090123301123323b370d01100e2811201832191c1d2f1411201f0209770122060f0813150c05070a43072d1a03280904088e095416052c1d0508053cca1a030335380d0b0c086fbb0d4b241e1e5d1b0c07252d0e0a024f17090c2a030c223a51a0460d28160db90c0c212c162c06033f3a0e0e0b02105e2a6210230a44436b081e7e790202210b902a5426454a401e26160a02090c09051c721e040ba901492a050e182b050401356515101002161e000004002d001e02ad0302002700300040005e00604024015f5f4060005b504a3f382c281f5352413938312d2c2813002105444317010a00011346762f3718003f3f2f3cfd012e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e3130014968b90013005f496861b0405258381137b9005fffc0385925140706070607060706232226272627262726353637363332171617161716173633321716171e012726272627151417162526272627262f01151417161516173605262723220623220623222726272627062315141716171617161736373602ad34222263b50a201a0f1043031013140c04025537201e420d160303040e8e3c131f1c06041521030f070d0d09feda0d0403020d1027090f0a140c0121080e1c2aa7280512050b08040d0a14662a0d11020819060724477577100904041017020807390f61adbf4f1c4a010f0a4e428333334817271d1b130a7b25223a060c0c2c1d086b233a2f30418526072136510555a8035e25492a0342468d458b120d2147610b6edc1225060e1e00060007001b031602f900410049007c0086009200a00091403f01a1a140a23b9b939189837d706c66604e482e17110b079b8d837d765e4a423b201e070604870272460293780500434205314c053154042828010000011e46762f3718003f3f10fd2ffd10fd3c10fd012ffd2ffd2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b9001e00a1496861b0405258381137b900a1ffc03859252227262736373506070623222e0127262706070607062322272e01272627263736373637363736333217161716173e013332171617161716171615140706070e0103230e0115141736052627062322272627262322070607060706070617161736373637363332171617161736373633321514070607161736371237070607060706073637362726270607061514171617360306070607060706073637363736025f09544b191433051915060b5b120402020b19051619130633381911140605050b0b0e10010c3e6cb30c060506010f20220a49580614141b06032a2c1906395a140a1d0321010244874b150d0f1008641d18420d08060603140f01145a1414220a04060e180f10122622213809121a181849360b043b1ed70b140519170714181da30b160109050809020abd240c0307102102050e1d070d0f1b28240e5e7b05031f1c190d1410103f7f14191b1113050a0b0a092664647156132255170b141c0521191d21020606090c07153fccd12e0a3002a00a340c0609353017348547500b0f0732463d3d196b513406206565a60b035c3a3a0507363659204a66565617141916010aa2ee050e0652491a0c0a585c2e5b0122150f101a220907016d1b15062f56e31f38050a274d7b00050008000d027e0308003d0043007b0083009600a54047019797409800958b837e72665a5449403e2a268d847f7e7c6a5d5c4d423e21006264091f1d1d1f9193061f1d1d1f700252514544023b0c06057878050910051635011900012146762f3718003f3f2ffd2ffd10fd3c012ffd3c2f3cfd872e0ec40efc0ec4872e0ec40efc0ec4012e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b900210097496861b0405258381137b90097ffc038592514070607062322262322062322272627060706070623220623222726272627263534363736333217161736373637363736333236333217161716171416272627061514133534272627060706071617160715062322272627262706071514171e011716171633323632372627262726353433321716171633323736073427151417161727342627262726270607161716171617161736027e03111e17300c3b12092508140f0c0b020511170f39103f0f150c050509111a3c0768440c1c111112070f140d352f1a04100414160f0c090a06db1c1019fb1b0520142b2222021a17020806111d1111482d6535070903130a1605050d381b14050a021a110f0d472a29090521393dbe67211b1bec0f01090f04140a18030c1002060f090c17a4090c3f171203051f17180911300b08093f292a478ec3220853021c2b1c1c2d0d1e150d0c0b0884548d71710413d38e941e1537fe780730db2ffe0a07050638998c440d07412a2bae551303070e1d240ecf52a40209081e3b06644129148c5454020e0e2d09bf08314c3c3b160d370c418362b11522234a610c4181254c1c0006000c002f0212030d001e002f004c005b006d007700734031017878407900756e38726e38305c024d3e030f0e1f0200270234636202554a2c0508600557230419670551081901010e46762f3718003f2f2ffd10fd2ffd10fd3c012ffd3c2ffd2ffd2f3cfd2ffd2e2e2e2e002e2e2e3130014968b9000e0078496861b0405258381137b90078ffc0385901140706070607062322272627263d0114373637363736373633321716171607342726232207061514171e01333237360526272635343736370607060706070617161716171617161716333236131407062322272635343332171e0107342726232207151417163332373635343617260706072216333e010212242d4b1718141b63422422210f0412123a311246194e3e301f181f32436e69301f7f10431453342efed6452724040313080c09090901010d0b0b040b0a0a100a04150425d814192f461c0f3c200c263f42151b25100912161510100f022a0a14190301110f08140176495266220d0d0a331b5c56355e044f1d3f2b352c041458456e5845647ea97c526aaa670d1a50458c305850563a1a1640051724232824323b2b2b0f1612131f05030a011731222b683b4c840c2393321e35450e4f133e4a201c15020a2802151a010406240007001200130216030600240030004c005500650074007e008d403f017f7f4080007d786d665a4f3b2d266b514d44392b251b6002560a023e3d0702417a025d5b6675035631020053041337042169046476047321011300011b46762f3718003f3f2ffd2ffd10fd10fd012ffd2ffd3c2f3cfd2ffd2f3cfd10fd2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e3130014968b9001b007f496861b0405258381137b9007fffc038590114060706070615141615140706260706070623222726272603263534373637363332171607270706070607161736373637342726272623220710133637353426353426353437363736373e0103262322071631323613140706072734353426353437363332072e01232207162332373637363332172706270615141615360216504122420105130d320b0620180d0c1714070c1110050c524128954c5737170c2b341e4a170838373b32322943320d9f492c4244060a1f15152f322f4af319020e75210d548e3a33390c0c24072f641a062713102823010508061411090b0c11142903044d01f34672140c1603041c721c26050401020109071d19101c010cf55314070f0b083a43fe020221130a10170f141317e93f2c26120d18fef4fea30c06071658160a2609100502020814137efe362611271301fd35241e020b011e1659161404013c1016092305010202250c0102080f0a250a1e000700010016021b03030022003f0043004e006d0079009100b8405601929240932176534f4d4643413c3a09918d8b7a7872584d43413e25211d4b4d09414142404041550e837402626a02621102323202132a021b468302627005667e056649040d2e041736044489045c17010300011146762f3718003f3f2ffd2ffd10fd2ffd2ffd10fd012ffd3c2ffd2ffd10fd10fd10fd10fd872e08c40efc0ec4012e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e3130014968b900110092496861b0405258381137b90092ffc03859250e01232227262726270607062322272635343736373633321716151407161716151427263534363736353427262322070615141716333237363332173637260f013f010522271e0133323736370637222726270615141615140706232227262726353437363332171615140706032623220716151417363534073427262322070e01151417161716333237263534373617020b05490d05160e0f0804193e302d1a1f7e03053a456773453910060e3769020f0103333e64262479131a86305711030c3d12231714032904fee8242409151770280104414208150912273b2e29151c111b0e0a1b254c472118050734051114053d0d032c171d381e08040a080b140a11140a1f21231b6c0e48150e0e0702150c090e37e02c3972667b826c7c6e1f060c311a196809010b2b0a1b3670647a1852de2471952e0932172d1577132a17310b140c2409122ad31f0e0f18070248031114110c13503a37584057543c5026263d011d030a24a70f0d251ba1a7412f3c251f3e192d384d0b060620111a2d310700070001fff701f0031700330064006a00730083008f009c00b34057019d9d409e0098938d6965575352501184716b675f5948062402137d02749002740802506a17150313025034020096027a8c8a029a7705814d051c8605817204203c042c4a0471706b002c011900201e1c030d00012446762f3718003f173c3f3f3f2f3cfd10fd10fd2ffd10fd10fd012ffd3c2ffd2ffd2ffd173c10fd2ffd10fd10fd2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e3130014968b90024009d496861b0405258381137b9009dffc0385901140706070615161514070e010726272627061514151615142322262326070623222e01353413123736373633321716171617160734272627222726232207060706070607060706171633321633321633363733161716173637262726272635343736373603363726270f0126272e012b0117360114062322263534363534373633321607262306230607061f013e012734262714061514173633343601f03b0e211c64090c6215181f250d03011d0a2a09080e11050f152c282a0b051a151013232a0b75313d1f131e39016f53070c15070d1011120701050501060b041c030f241111080a0e3b46081c380b1a022a2328301b289405042b3c0923020508530c1a1427010a643c13100b240832253522180f14020b01030301182e64170104030c0a030231704410161301a128220d0f35051c3a47150a1b0a16170c550a0101010b460a2c012f0136140a07060809020e283144152033121610072953727283610a201b0f03040690910e738a0d10231e3b0543380b022931273afe0903045d7109ec090f030b1d01023d3b520b131b6e1c19060130311201030e18320f043a1c0427030f3c101a2002104500040011003201ea0310003a0044006f007d0086403b017e7e407f00766651413b2e1076696852433c3b0e2b0e6033024d450200701602605a022031054f5605257c04061304646b047274062501010e46762f3718003f2f2f3cfd2ffd10fd10fd2ffd012ffd2ffd3c2ffd2ffd10fd2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e3130014968b9000e007e496861b0405258381137b9007effc0385901140706070623222726272627263534373216333236353427262726272627263534373e0133321716171615140623222623221514171e01171e010335342627262322071613342726272627263534333217373427262322070615141716171615140706232227060715163332373e01072627162322271617161716333201ea09070828ce1c384507050a1c3d0c7a340d20120e0e3b3a33201e0f10a62e2c343c130f2b1201601d10302344160b2b6902011d071619276024133a47142c5e2e331c3a3414275e4f494444491d192240650e1f535d3d2034427b1a11315d5458100c16312d194e010d131a1516830708090d183b0625704d1f0d0e0704051c1d20443f271e2428611416211a431237240c161e1325231168011407030d020f0f01fece4f2e181d230f222d3f16390d1312372f454e2c201f28422113114622480629070a5a940c0102241e170106060000040007000902970300003a0068007300800096403f0181814082007b756e6a6762570c087b75746e6a69605d554a491f1e7779061f1e1e1f797b061f1e1e1f5002263c3b0200454404311a04182f011800012646762f3718003f3f10fd2ffd3c012ffd3c2ffd872e0ec40efc0ec4872e0ec40efc0ec4012e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e3130014968b900260081496861b0405258381137b90081ffc0385901140706070e022322272627060706070607060706070623222726272637132e0127262726353437363736373e013332171617161716171617160735262726272627262b010607061d01161716171615140615060716173637363736273426353633321633321736253506070607363736373617350607060706073637363736029711080b0308280821293605060f050e0a0b0614061a1e0c132b1d1d2302490d2712212133080903050f0234053e270d4c59232e61203a0a1d20381d1d3b7e593135030a0a2d68100f150b1035284c1924060c0301030111021c052e6b18fdda0f04080f0a0b070807a8041b011a0f1f0f121212240287294811180e101c0c11013d72212921201b350a191b140e0e0e150199130f0609090f1103151a0c1d39061703011317070815050f032817030c0a050a1e160e2621031102260304050d022907a1e30e1947892384220e0112030d09154d7d0a05053236050a12231fbd08020e068a5fad0a12396bd20000020013003e02bb02f8002d005800584021015959405a0045424030283e2e1c0022023849021124053651050a0a1501011146762f3718003f2f10fd2ffd012ffd2ffd2e2e2e2e002e2e2e2e2e3130014968b900110059496861b0405258381137b90059ffc0385901140706070607060706232226272627263534373637161716171e011514070607061516333237363716171617162726270607060706232235343736373637262716232226232207061514171617161716333237363736373602bb2e0c0c0f12486f2c2f52922d0c0a0823252936354e0c05211c1d0309012222361e1e407d0a0a0947295116281617253f5a10100c0d13161e2056051005172b211a0b191b34302a6f524b16031e1501ff327c2120241964240d474212312c1c5389943604040814074804035a600d281e37a66768091b1234305f050b43874e233a7a204c48231f4009010108a87f731435182619110f554d71106449000003000c00030289030f003b00570067007b403201686840690065625852463e372f5f59584e3c281a004e4f06161515162b02484e051c504f045f5e221f011c010c00011a46762f3718003f3f3f3c2f3cfd3c10fd012ffd872e0ec40efc0ec4012e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e3130014968b9001a0068496861b0405258381137b90068ffc0385901140706070615060706070623222726272e012726270326272635343332163332363332171617163114061514171617363736373637363332161716272627060706070607062322272627262726071333361736373637360135342637262b011e01333a01333216028902022a352a5b1b1a2b1615404509042405030532060708130a270a0b2e0c22140c171204060605371a2c1d081505080d93040a2711720d241f1f202036080c010710060b7f144908376d396a152b20ff000a015b172e0b181e061f060c25023c02070a425201509c2f2f47070906023f13092c01972f303827180b020f0a231d071b072f483c3b532b473b1729054108160b0a2a2a3a302f37375b0a61ba2d5a1201fd95011251a62a5237fe0707071e090f162a0400040015005202f802fb003f0073007c008600874038018787408800766c656157504842352b817d79745b5a401e005b5d061e1c1c1e7b040a8404144d042f560421810e0479780a3a3901011e46762f3718003f3c2f2f3cfd3c2ffd2ffd2ffd10fd01872e0ec40efc0ec4012e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e3130014968b9001e0087496861b0405258381137b90087ffc03859011407060706070607062322272627060706220623222726272627262726273e0133321f011e0117161716173637363332171617161736373637333216171e01272627060706070623222627262322062322272627262f012606271516171617161736373633321716173616333237363736373603262706072316333227262726271e0133323602f817111101130f0b097c2b120120100f14274f141a23200a0d0d1006172e0b72110324060e35080c0d100607070618262b0a0d0f050d191e0a040b8104071d43224315151f130a050c28051d1b033e1411130b0a1c1b0c164216142c0e26376c1010190a0b170c0d0c2d093f0a14171010093f070a3050040f1b02ad0509097e0c19180e3b024429594142017254151115013d16161c0225211d264d5c1a61c30719020103230d11616e1411100912050f1404416f88163c060b5d5b112162628e241471020a81643e3e732d010115010756b1509e060a2221353b24240103193482616127fe170b180d011c0e0b0e040c111d050000050019001002d902f1002d0056005f0067006f0088403a0170704071006c6b6865605e594f3b363228246c696866655754423f2e180400616002084402165102085a59021c4b050e460511200b00011646762f3718003f2f2ffd2ffd012ffd3c2ffd2ffd10fd3c2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e2e2e2e2e3130014968b900160070496861b0405258381137b90070ffc038590114070607161716151406232226232206232226272635343726272635343e0133221716173037363332171617162734272627060706232226272627060706151416151407161736373e0133321716173635342635343605262715141e0133320135342726271516053526312314171602d9432e2e27261a7d150c92010ec00a0d5804167c1d1e1f0e940b010d543476600e112d2a070a30201d0d126964060a143524220f3238819d2e233060023802064d2e2f507cbcfe162d300b40040601483826262bfed53701100901e6163722232f2f2c4b135c98705a104423156526262e2a3a1a7601625f5e4d3633161c0e0a28250c0b5d581e563b2b0b2c2f0402b50c08873f251b360126472b2b4a0504b5040aa89d3a4313121350fea809163a2625192f261e4620180f0003001300060278030a0032005800650090403e016666406731623b37332a6460553d31213335062c2a2a2c3d3f06211f1f214d020818034646021542021b494705605f5c03592e012501100d0a00012146762f3718003f3c3c3f3f2f173cfd3c012ffd2ffd10fd2ffd872e0ec40efc0ec4872e0ec40efc0ec4012e2e2e2e2e2e002e2e2e2e2e3130014968b900210066496861b0405258381137b90066ffc038590106070e0115140607062322262322062322272e0135343635343635342726272627363736371e011716173637363332161706270607062322272627060716171e0115140615071732333237363f01363736373e01353427260322062322262b01161736272601fe15151b0e14030c300a24060b2e0b1b0a041d080c100d0c01710247421440241108121637450c1f7901454f1a424f0e0c09214b046f204311230c0806096b1a01050a0804020119149e231f9c0a2509081c0733071098090501ca17181e284411e0041502030c0550061b6e1b134d13131a151401e40f1e1d01222a411f3c24566a72206dda2a687b1357ab012d42841a381e134810a7030309885f2e0601120fd810081a16fd7502040f1b02011200040006000f025c03130032003a00430071008840380172724073006a695c564a3b37332a67635a544c44403f3b37332a26150c0b00333506262323260c05611005262e043f461f010500011546762f3718003f3f2f3cfd2ffd2ffd01872e0ec40efc0ec4012e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e002e2e2e2e2e2e2e2e2e3130014968b900150072496861b0405258381137b90072ffc03859250706070623222e012726271306070623222e023534373637363736373633321716171e0117060706073637363332171e01032627262716171613262726271514171627262706070607263534373637363736353427060706071617363332363316151407060716173336373637363736025c0149829c290a3718151204c8193f3b1a093508161310102fbb0549331c14171b08011d010a3229540c443e0608340612480c0d07170512024f040b08180f091f0510215e522b113630102646061520ac7d4e0b0c1f050fb228116c4e3d01270628344415293b5dba092837431c11403819014a0218173b19690b0f0604030f1e01100b0a0b0f019c07134c4386031715270c58018e42460a0c354d04fe651a2a100f0a27190f031d380b1a1613040b055c501b34690b080c74061912143335073d070917b4835e0f6a0f0e12070d1c2b00ffff0018ffdc010f03020006000b000000030014003e015c02ec001e0032003a004a4018013b3b403c003531282737332a1f0d003904031103010d46762f3718002f2f10fd012e2e2e2e2e2e002e2e2e2e3130014968b9000d003b496861b0405258381137b9003bffc03859250e0123222e0127262726272635343736233217161716171617161716171627262726272627262723060716171617161317361726232207162332015c043d100e270f23151503352e075408130e0512030a1b1b1c0b0629243a1a1a210c0f200e23070d1a0205111e2851040d4a10020d2a1b0409600b171315804e4f0aa48d0c0505181507230e1e4c4b503c1e62570f3a627a232453305b060c0d1b2d5987fef1030815101b09ffff0013fff900f303150006000c0000ffff002e0045021f02a7000600060000ffff003a0011021b00e900070010fffdff080004003501b0013103560024002f004c00570077403301585840590a51432b52514d4327154602292e2503180e0c030a31300329390223494b051a56041a37350402041a2701012346762f3718003f2f2f2ffd3c10fd10fd3c012ffd2ffd3c2f173cfd3c10fd2e2e2e2e2e2e002e2e2e3130014968b900230058496861b0405258381137b90058ffc0385913363736171633321716151407141514070623220f01061635142322262726272627263534173427161532173436351407353427262322330615141606171617161716172e013534361716313217262726271514171633323f070b080d14024d194f010103110a0c01022f481861040b0b160506e11d040b0b033507102a49060b0501050303030d1f3f08220c0a0e084020060a1614150c07034b07020201010849281414151422041606081864011541181e1e3f28312c38690d22453a04061e0508103660040a150e052222190f0f2225571b0b8c120a050202c5373c040d0b11363900ffff0000001502a8030d000600240000ffff001e000502310309000600250000ffff00170067022902f7000600260000ffff000b000f023f0313000600270000ffff0007000a0225031b000600280000ffff001b003402640302000600290000ffff001e002302ae02ea0006002a0000ffff0027003c02aa02dd0006002b0000ffff000d0007024a03170006002c0000ffff000f001d027703150006002d0000ffff00250013026802fd0006002e0000ffff002d001e02ad03020006002f0000ffff000c001b031602f9000600300000ffff0008000d027e0308000600310000ffff000c002f0212030d000600320000ffff0012001302160306000600330000ffff00010016021b0303000600340000ffff0001fff701f00317000600350000ffff0011003201ea0310000600360000ffff0007000902970300000600370000ffff0013003e02bb02f8000600380000ffff000c00030289030f000600390000ffff0015005202f802fb0006003a0000ffff0019001002d902f10006003b0000ffff001300060278030a0006003c0000ffff0006000f025c03130006003d0000ffff0018ffdc010f03020006000b0000ffff002b0051015d02dc000600120000ffff0013fff900f303150006000c0000ffff002e0045021f02a7000600060000001d0012fff30328030b00300056006c007c009200a200a900b200c200cc00db00e300e600ed01790185019901ab01bf01d501df01e501e901f201fe020a0213021f022600000114070607060706070623220623220622060706272623222726272627262726353437363736333216321633321716171607342726272627262322262322070607061514171e0117163332363236323632373637363736031406232227343736372e01353437161532173637320714232226233c013516151636333216270e011514173237331407062b01222726353433321607062322353437363736343732171635272206232637331714232227353237162714070615220623342635343736371617060730263530363317270607060726273236333216173e0127072335263635320127372506072637273301140706071407060706070617062322262322062322262322073e013332163b0132373e01352635363736373637141736353426353437362322071633060706233227363534271e01333237363715333637060715301633303736373427262707060736373637363723060706070607062b013633321633323736373637363332171617161716071e013316250623223734373e0137331601140706072206232227263534373e01333217160f01262726232215141706273526363332150722262322151432170623222635343633321615270607163332171526230722273536372e01273516171335262322071516333227362707153317270717273427261514173336013522262322151417363736253427061514161532363332012226232207163332173423220615163332343332272e01232207320328141e2417200a28331102280d030b080f032a2b0e0a1e382b1d2828361211545b981e4f040e07300314505b2f2812130f353a3d370804420477516241301723a1631c4104100809082f042a4532191627922006050e01050c021304130305060c0b43190417050f030b0308118b07240805090b01050a0b0d08062c040b3e28071113071003050108054a010b0107060ec60c040e0a0d07bf0601010d0303070408087f081203100a039f0505060b0f110105040409030b0b39040e01070801520b05feba050f0104031401c207111e0512241e1f0602250b031c04044903224e131628065006083610271b200502023663190d0304070b0c0c020d111c01030808202604461f12051c040a070404180b18080701051c062104365c06123f14170a0a0e0532052c311a032f28064114030402031d0a16332d223f0f2f30261a0d18060a031a0118fe2329060f02170c05060b0301880a0306020c05120b090204210811070555070207050515050d08011b05204f0623030a2f0408101417161c060e52112321040b04230f09060e0c28032d041d32ea070504080806068f030d070e6c110211a60a0e040d070124050e040a07010c0dfe200b10030102041101300516030c07080b12670f0d110411040311a1030f030f032801804c364f2a1b1c09191f0f0304010303011a13141c2e3e474435896c751b06060d2c3c60545c2b4a384248191612252f6f5263423d61880e0303030f13203e202c4f0151084a07020402080c360304040c1c060c19171d040d390e081101051e0a08020905080908030a100c072614340a1b160d02080a04050512010403060ce20b070b0607b902070b2a03030b041820010408c3050b0f090303b61313160f05340414080325020e09050201fe8d051ff909072e1b05fee7180a1024050a160201010405170f0c210b0720310d02030204030205020f0328050d0f090423040b0c0719030901071402110d0b020d0c0a091f0609080e110314040e070a402a060315110c0302050a0113150f02221e0c030613251d0e191f1a220d21090a060614bd191a1717020c111afe1c17130405071712140a070c171a0f0407010f0b2c1b1307044f061b1723030922040b24111d15160611112709040a0503070e14220707070a060901c91d07071a07260806070b950a040a87110103190b0708fee81403120b1401030bf50f05130b040a0102feba040e045827181126032c060e14ffff0020013800d801ec0007000dfff7ff08ffff003501b001310354000600430000ffff0013019c012b03440006000a0000ffff0013ff5c012b01050007000a0000fdc1ffff003501b001310354000600430000ffff003501b0025e035400260064000000070064012d0000ffff0013019302630344002600650000000700650137fff7ffff0012000202e200c80026001100000027001100fb00030007001101f0fffd000000000000007c0000007c0000007c0000007c000002400000025a0000063a0000064a0000065a0000066a0000067c0000075c000008220000090a00000aec00000c2000000d7600000e4200000f3e000010e60000131a0000157600001788000019dc00001c2c00001e400000202c000021f40000246e000024860000249e000024ae000024c6000024d600002730000027400000298a00002b9000002d5200002f2600003108000032fa0000356400003794000039d800003bce00003da600003f240000419a000043f2000045c4000047c400004a1800004c9200004e7c00005094000051f4000053a0000055b8000057800000593800005b1800005b2800005c2c00005c3c00005c4c00005c5e00005dce00005dde00005dee00005dfe00005e0e00005e1e00005e2e00005e3e00005e4e00005e5e00005e6e00005e7e00005e8e00005e9e00005eae00005ebe00005ece00005ede00005eee00005efe00005f0e00005f1e00005f2e00005f3e00005f4e00005f5e00005f6e00005f7e00005f8e00005f9e00005fae00006598000065aa000065ba000065ca000065dc000065ec000066040000661c0000663c01f4003f00000000033d0000033d0000012f0024027c00100246002e0246002e0246002e0246002e0148001301280018011a001300f70029023a0018014800130246003c010b0012017c002b02510006022c002902740021020600100246001602680018023400180248000c023400030209000c010b000f01480013012800180246003c011a001301fb00010246002e02b60000024a001e02460017024e000b025100070282001b02df001e02c400270262000d0291000f0291002502ca002d0330000702960008023d000c02370012022e0001020900010209001102b0000702e4001302ad000c030f001502f3001902850013027c00060128001801760014011a00130246002e0246003a0159003502b60000024a001e02460017024e000b025100070282001b02df001e02c400270262000d0291000f0291002502ca002d0330000c02960008023d000c02370012022e0001020900010209001102b0000702e4001302ad000c030f001502f3001902850013027c000601280018017c002b011a00130246002e0343001200f7002001590035014800130148001301590035027c0035027c0013030100120002000000000000ff7b00140000000000000000000000000000000000000000006b0000000100020003000400050006000700080009000a000b000c000d000e000f0010001100120013001400150016001700180019001a001b001c001d001e001f0020002100220023002400250026002700280029002a002b002c002d002e002f0030003100320033003400350036003700380039003a003b003c003d003e003f0040004100420043004400450046004700480049004a004b004c004d004e004f0050005100520053005400550056005700580059005a005b005c005d005e005f006000610086008800b600b700c4010200b400b500ab0d71756f7465726576657273656400000000000300000000000004cc000100000000001c00030001000004cc000604b0000000000253000100000000000000000000000000000001000300000000000000020000000000000000000000000000000000000000000000000000000000000001000000000003000400050006000700080009000a000b000c000d000e000f0010001100120013001400150016001700180019001a001b001c001d001e001f0020002100220023002400250026002700280029002a002b002c002d002e002f0030003100320033003400350036003700380039003a003b003c003d003e003f0040004100420043004400450046004700480049004a004b004c004d004e004f0050005100520053005400550056005700580059005a005b005c005d005e005f0060006100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000062000000000000000000000000000000000000000000000000000000000063000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000640065006600670068006900000000000000000000006a0004011c0000000e000800020006007e00a700b62010201d2026ffff0000002000a700b6201020182026ffff0000000000000000000000000001000e00ca00ca00ca00ca00d4ffff0003000400050006000700080009000a000b000c000d000e000f0010001100120013001400150016001700180019001a001b001c001d001e001f0020002100220023002400250026002700280029002a002b002c002d002e002f0030003100320033003400350036003700380039003a003b003c003d003e003f0040004100420043004400450046004700480049004a004b004c004d004e004f0050005100520053005400550056005700580059005a005b005c005d005e005f00600061006200630010006400650066006700680069006a0000000000010000001a0001000200060001000600320025ffd90032003cff9900000000001000000070090805000707030605050505030303020503050203050506050506050505050203030503050506050505050607060506060607060505050505060706070706060303030505030605050505060706050606060706050505050506070607070606030303050802030303030606070000000a0805000808030606060606030303020603060304060606050606060606050303030603050607060606060607070607070708070606060505070707080806060304030606030706060606060707060707070807060606050507070708080606030403060802030303030606080000000b0906000909030706060606040303030604060304070607060607060606060304030603060608060606070708080707070809070606060606080808090807070304030606040806060607070808070707080907060606060608080809080707030403060903040404040707080000000c0a06000a0a04080707070704040303070407030507070806070707070706030404070306070807070707080908070808090a080707070606080908090908080404030707040807070707080908070808090a08070707060608090809090808040503070a03040404040808090000000d0b07000b0b04080808080804040403070408030508070807080807080707030404080407080908080808080a09080909090b090707070707090a090a0a08080405040808040908080808080a09080909090b090707070707090a090a0a0808040504080b030404040408080a0000000e0c07000c0c04090808080805040403080508040508080907080908080807040504080407080a08080808090a0a0909090a0b0908080807070a0a0a0b0b09090405040808050a08080808090a0a0909090a0b0908080807070a0a0a0b0b0909040504080c030505050509090b0000000f0d08000c0c050a0909090905040404090509040609080908090908090808040504090408090a090909090a0b0b090a0a0b0c0a09090808080a0b0a0c0b0a0a0406040909050a090909090a0b0b090a0a0b0c0a09090808080a0b0a0c0b0a0a040604090d04050505050a0a0c000000100d08000d0d050a0909090905050504090509040609090a08090a09090908040505090508090b090909090a0c0b0a0b0b0b0d0b09090908080b0c0b0d0c0a0a0506050909060b090909090a0c0b0a0b0b0b0d0b09090908080b0c0b0d0c0a0a050605090d04060505060a0a0c000000110e09000e0e050b0a0a0a0a060505040a060a05060a090b090a0a0a0a0a090506050a05090a0c0a0a0a0a0b0c0c0a0b0b0c0e0b0a0a0909090c0d0c0d0d0b0b0506050a0a060c0a0a0a0a0b0c0c0a0b0b0c0e0b0a0a0909090c0d0c0d0d0b0b0506050a0e04060606060b0b0d000000120f09000f0f050b0a0a0a0a060505040a060a05070b0a0b090a0b0a0b0a090506050a05090a0c0b0a0b0b0c0d0d0b0c0c0d0f0c0a0a0a09090c0d0c0e0e0c0b0507050a0a060c0b0a0b0b0c0d0d0b0c0c0d0f0c0a0a0a09090c0d0c0e0e0c0b0507050a0f04060606060b0b0e00000013100a001010060c0b0b0b0b060605050b060b05070b0b0c0a0b0c0b0b0b0a0506060b050a0b0d0b0b0b0b0c0e0d0c0c0c0e100d0b0b0b0a0a0d0e0d0f0e0c0c0607050b0b070d0b0b0b0b0c0e0d0c0c0c0e100d0b0b0b0a0a0d0e0d0f0e0c0c0607050b1005070606070c0c0f00000014110a001111060d0c0c0c0c070606050b070c05080c0b0d0a0c0c0b0c0b0a0507060c060a0c0e0c0c0c0c0d0f0e0c0d0d0e100d0b0b0b0a0a0e0f0e100f0d0d0607060c0c070e0c0c0c0c0d0f0e0c0d0d0e100d0b0b0b0a0a0e0f0e100f0d0d0608060c1105070707070d0d0f00000015120b001111060d0c0c0c0c070606050c070c06080c0c0d0b0c0d0c0c0c0b0607060c060b0c0f0c0c0c0c0d0f0f0d0e0e0f110e0c0c0c0b0b0e100e10100e0d0608060c0c070f0c0c0c0c0d0f0f0d0e0e0f110e0c0c0c0b0b0e100e10100e0d0608060c1205070707070d0d1000000016120b001212070e0d0d0d0d070706050d070d06080d0c0e0b0d0e0c0d0c0b0607070d060b0d0f0d0d0d0d0e10100d0e0e10120f0d0c0c0b0b0f100f11110e0e0708060d0d080f0d0d0d0d0e10100d0e0e10120f0d0c0c0b0b0f100f11110e0e0708060d1205080707080e0e1100000017130c001313070f0d0d0d0d080706060d080d06090e0d0e0c0d0e0d0d0d0c0608070d060c0d100d0d0e0e0f11100e0f0f10130f0d0d0d0c0c10111012110f0f0709060d0d08100d0d0e0e0f11100e0f0f10130f0d0d0d0c0c10111012110f0f0709060d1306080808080f0f1200000018140c001414070f0e0e0e0e080707060e080e06090e0d0f0c0e0f0e0e0e0d0608070e070c0e110e0e0e0e0f12110f10101114100e0e0d0d0d11121013120f0f0709070e0e08110e0e0e0e0f12110f10101114100e0e0d0d0d11121013120f0f0709070e1406080808080f0f120000000001029c01900005000002bc028a0000008f02bc028a000001c5003201030000000004000000000000000000000300000000000000000000000046726f670040002020260355ff5c0000035500a4000000010000000000000001000080000000033d02f10000600002dd0275416374696f6e204a61636b7320202020ffffffff37fffffe4143545230300000000000000001000000010000fae7a6eb5f0f3cf5000003e800000000b2050dda00000000b20549240000ff5c03280356000000030002000100000000000100000356ff38000003430000000d032800010000000000000000000000000000006b00010000006b0227001d01030009000200080040000a00000097013000030003";
		}
	}

	/**
	 * 字符和干扰线扭曲
	 * 
	 * @param g
	 *            绘制图形的java工具类
	 * @param w1
	 *            验证码图片宽
	 * @param h1
	 *            验证码图片高
	 * @param color
	 *            颜色
	 */
	private static void shear(Graphics g, int w1, int h1, Color color)
	{
		shearX(g, w1, h1, color);
		shearY(g, w1, h1, color);
	}

	/**
	 * x轴扭曲
	 * 
	 * @param g
	 *            绘制图形的java工具类
	 * @param w1
	 *            验证码图片宽
	 * @param h1
	 *            验证码图片高
	 * @param color
	 *            颜色
	 */
	private static void shearX(Graphics g, int w1, int h1, Color color)
	{
		int period = random.nextInt(2);

		boolean borderGap = true;
		int frames = 1;
		int phase = random.nextInt(2);

		for (int i = 0; i < h1; i++)
		{
			double d = (double) (period >> 1) * Math.sin((double) i / (double) period + (6.2831853071795862D * (double) phase) / (double) frames);
			g.copyArea(0, i, w1, 1, (int) d, 0);
			if (borderGap)
			{
				g.setColor(color);
				g.drawLine((int) d, i, 0, i);
				g.drawLine((int) d + w1, i, w1, i);
			}
		}
	}

	/**
	 * y轴扭曲
	 * 
	 * @param g
	 *            绘制图形的java工具类
	 * @param w1
	 *            验证码图片宽
	 * @param h1
	 *            验证码图片高
	 * @param color
	 *            颜色
	 */
	private static void shearY(Graphics g, int w1, int h1, Color color)
	{
		int period = random.nextInt(40) + 10; // 50;

		boolean borderGap = true;
		int frames = 20;
		int phase = 7;
		for (int i = 0; i < w1; i++)
		{
			double d = (double) (period >> 1) * Math.sin((double) i / (double) period + (6.2831853071795862D * (double) phase) / (double) frames);
			g.copyArea(i, 0, 1, h1, 0, (int) d);
			if (borderGap)
			{
				g.setColor(color);
				g.drawLine(i, (int) d, i, 0);
				g.drawLine(i, (int) d + h1, i, h1);
			}
		}
	}

	/**
	 * 获取透明度,从0到1,自动计算步长
	 * 
	 * @param i
	 * @param j
	 * @return float 透明度
	 */
	private static float getAlpha(int i, int j, int verifySize)
	{
		int num = i + j;
		float r = (float) 1 / verifySize, s = (verifySize + 1) * r;
		return num > verifySize ? (num * r - s) : num * r;
	}

	/**
	 * 生成指定验证码图像文件 - 本地测试生成图片查看效果
	 * 
	 * @param w
	 *            验证码图片宽
	 * @param h
	 *            验证码图片高
	 * @param outputFile
	 *            文件流
	 * @param code
	 *            随机验证码
	 * @throws IOException
	 */
	public static void outputImage(int w, int h, File outputFile, String code) throws IOException
	{
		if (outputFile == null)
		{
			return;
		}
		File dir = outputFile.getParentFile();
		if (!dir.exists())
		{
			dir.mkdirs();
		}
		try
		{
			outputFile.createNewFile();
			FileOutputStream fos = new FileOutputStream(outputFile);
			// outputImage(w, h, fos, code, "login"); //测试登录,噪点和干扰线为0.05f和20
			// outputImage(w, h, fos, code, "coupons"); //测试领券,噪点和干扰线为范围随机值0.05f ~ 0.1f和20 ~ 155
			// outputImage(w, h, fos, code, "3D"); //测试领券,噪点和干扰线为范围随机值0.05f ~ 0.1f和20 ~ 155
			// outputImage(w, h, fos, code, "GIF"); //测试领券,噪点和干扰线为范围随机值0.05f ~ 0.1f和20 ~ 155
			// outputImage(w, h, fos, code, "GIF3D"); //测试领券,噪点和干扰线为范围随机值0.05f ~ 0.1f和20 ~ 155
			// outputImage(w, h, fos, code, "mix2"); //测试领券,噪点和干扰线为范围随机值0.05f ~ 0.1f和20 ~ 155
			outputImage(w, h, fos, code, "mixGIF"); // 测试领券,噪点和干扰线为范围随机值0.05f ~ 0.1f和20 ~ 155
			fos.close();
		}
		catch (IOException e)
		{
			throw e;
		}
	}

	/**
	 * 本地测试类,可以生成样例验证码图片供观看效果
	 * 
	 * @param args
	 * @throws IOException
	 */
	public static void main(String[] args) throws IOException
	{
		File dir = new File("E:/logtest/verifies8");
		int w = 120, h = 48;
		for (int i = 0; i < 150; i++)
		{
			String verifyCode = generateVerifyCode(4);
			File file = new File(dir, verifyCode + ".gif");
			outputImage(w, h, file, verifyCode);
		}
	}
}



调用的地方随机获取验证码样式:   分布式可以存放在redis

public class ValiCodeServlet extends HttpServlet
{
	private static final long serialVersionUID = 1L;
	
	/** 验证码缓存key */
	public static final String RANDOMCODEKEY = "RANDOMCODEKEY";

	private static final Logger logger = Logger.getLogger(ValiCodeServlet.class);

	public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
	{
		response.setContentType("image/jpeg");
		// 设置相应类型,告诉浏览器输出的内容为图片
		response.setHeader("Pragma", "No-cache");
		// 设置响应头信息,告诉浏览器不要缓存此内容
		response.setHeader("Cache-Control", "no-cache");
		response.setDateHeader("Expire", 0);
		
		try
		{
			// 生成随机验证码
			int charSize = 4;
			String verifyCode = RandomVerifyImgCodeUtil.generateVerifyCode(charSize);
			
			if (StringUtils.isNotBlank(verifyCode))
			{
				RedisUtil redisUtil = SpringContextUtils.getBean(RedisUtil.class);
				
				String key = request.getSession().getId() + "_" + RANDOMCODEKEY;
				redisUtil.set(key, verifyCode.toString());
				/** 设置sesionTooken,90s后失效 **/
				redisUtil.expired(key, 90);
				
				// 再次存cookie备份
				CookieUtil.addCookie(request, response, RANDOMCODEKEY, verifyCode, 300);
			}
			
			// 生成图片规格w宽 h高 
	        int w = 100, h = 40;
	        int type = new Random().nextInt(7); 
	        if (type == 0)
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "login");
	        }
	        else if (type == 1)
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "GIF");
	        }
	        else if (type == 2)
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "3D");
	        }
	        else if (type == 3)
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "GIF3D");
	        }
	        else if (type == 4)
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "mix2");
	        }
	        else if (type == 5)
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "mixGIF");
	        }
	        else if (type == 6)
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "coupons");
	        }
	        else
	        {
	        	RandomVerifyImgCodeUtil.outputImage(w, h, response.getOutputStream(), verifyCode, "mixGIF");
	        }
		}
		catch (Exception e)
		{
			logger.error(e.getMessage(), e);
		}
	}

	public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
	{
		doGet(request, response);
	}

}

GIF格式的老外的工具类: Encoder

package com.test;

import java.io.IOException;
import java.io.OutputStream;

/**
 * @author: wuhongjun
 * @version:1.0
 */
public class Encoder
{
	private static final int EOF = -1;

	private int imgW, imgH;
	private byte[] pixAry;
	private int initCodeSize;
	private int remaining;
	private int curPixel;

	// GIFCOMPR.C - GIF Image compression routines
	//
	// Lempel-Ziv compression based on 'compress'. GIF modifications by
	// David Rowley (mgardi@watdcsu.waterloo.edu)

	// General DEFINEs

	static final int BITS = 12;

	static final int HSIZE = 5003; // 80% occupancy

	// GIF Image compression - modified 'compress'
	//
	// Based on: compress.c - File compression ala IEEE Computer, June 1984.
	//
	// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
	// Jim McKie (decvax!mcvax!jim)
	// Steve Davies (decvax!vax135!petsd!peora!srd)
	// Ken Turkowski (decvax!decwrl!turtlevax!ken)
	// James A. Woods (decvax!ihnp4!ames!jaw)
	// Joe Orost (decvax!vax135!petsd!joe)

	int n_bits; // number of bits/code
	int maxbits = BITS; // user settable max # bits/code
	int maxcode; // maximum code, given n_bits
	int maxmaxcode = 1 << BITS; // should NEVER generate this code

	int[] htab = new int[HSIZE];
	int[] codetab = new int[HSIZE];

	int hsize = HSIZE; // for dynamic table sizing

	int free_ent = 0; // first unused entry

	// block compression parameters -- after all codes are used up,
	// and compression rate changes, start over.
	boolean clear_flg = false;

	// Algorithm: use open addressing double hashing (no chaining) on the
	// prefix code / next character combination. We do a variant of Knuth's
	// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
	// secondary probe. Here, the modular division first probe is gives way
	// to a faster exclusive-or manipulation. Also do block compression with
	// an adaptive reset, whereby the code table is cleared when the compression
	// ratio decreases, but after the table fills. The variable-length output
	// codes are re-sized at this point, and a special CLEAR code is generated
	// for the decompressor. Late addition: construct the table according to
	// file size for noticeable speed improvement on small files. Please direct
	// questions about this implementation to ames!jaw.

	int g_init_bits;

	int ClearCode;
	int EOFCode;

	// output
	//
	// Output the given code.
	// Inputs:
	// code: A n_bits-bit integer. If == -1, then EOF. This assumes
	// that n_bits =< wordsize - 1.
	// Outputs:
	// Outputs code to the file.
	// Assumptions:
	// Chars are 8 bits long.
	// Algorithm:
	// Maintain a BITS character long buffer (so that 8 codes will
	// fit in it exactly). Use the VAX insv instruction to insert each
	// code in turn. When the buffer fills up empty it and start over.

	int cur_accum = 0;
	int cur_bits = 0;

	int masks[] =
	{
			0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF
	};

	// Number of characters so far in this 'packet'
	int a_count;

	// Define the storage for the packet accumulator
	byte[] accum = new byte[256];

	// ----------------------------------------------------------------------------
	Encoder(int width, int height, byte[] pixels, int color_depth)
	{
		imgW = width;
		imgH = height;
		pixAry = pixels;
		initCodeSize = Math.max(2, color_depth);
	}

	// Add a character to the end of the current packet, and if it is 254
	// characters, flush the packet to disk.
	void char_out(byte c, OutputStream outs) throws IOException
	{
		accum[a_count++] = c;
		if (a_count >= 254)
			flush_char(outs);
	}

	// Clear out the hash table

	// table clear for block compress
	void cl_block(OutputStream outs) throws IOException
	{
		cl_hash(hsize);
		free_ent = ClearCode + 2;
		clear_flg = true;

		output(ClearCode, outs);
	}

	// reset code table
	void cl_hash(int hsize)
	{
		for (int i = 0; i < hsize; ++i)
			htab[i] = -1;
	}

	void compress(int init_bits, OutputStream outs) throws IOException
	{
		int fcode;
		int i /* = 0 */;
		int c;
		int ent;
		int disp;
		int hsize_reg;
		int hshift;

		// Set up the globals: g_init_bits - initial number of bits
		g_init_bits = init_bits;

		// Set up the necessary values
		clear_flg = false;
		n_bits = g_init_bits;
		maxcode = MAXCODE(n_bits);

		ClearCode = 1 << (init_bits - 1);
		EOFCode = ClearCode + 1;
		free_ent = ClearCode + 2;

		a_count = 0; // clear packet

		ent = nextPixel();

		hshift = 0;
		for (fcode = hsize; fcode < 65536; fcode *= 2)
			++hshift;
		hshift = 8 - hshift; // set hash code range bound

		hsize_reg = hsize;
		cl_hash(hsize_reg); // clear hash table

		output(ClearCode, outs);

		outer_loop: while ((c = nextPixel()) != EOF)
		{
			fcode = (c << maxbits) + ent;
			i = (c << hshift) ^ ent; // xor hashing

			if (htab[i] == fcode)
			{
				ent = codetab[i];
				continue;
			}
			else if (htab[i] >= 0) // non-empty slot
			{
				disp = hsize_reg - i; // secondary hash (after G. Knott)
				if (i == 0)
					disp = 1;
				do
				{
					if ((i -= disp) < 0)
						i += hsize_reg;

					if (htab[i] == fcode)
					{
						ent = codetab[i];
						continue outer_loop;
					}
				}
				while (htab[i] >= 0);
			}
			output(ent, outs);
			ent = c;
			if (free_ent < maxmaxcode)
			{
				codetab[i] = free_ent++; // code -> hashtable
				htab[i] = fcode;
			}
			else
				cl_block(outs);
		}
		// Put out the final code.
		output(ent, outs);
		output(EOFCode, outs);
	}

	// ----------------------------------------------------------------------------
	void encode(OutputStream os) throws IOException
	{
		os.write(initCodeSize); // write "initial code size" byte

		remaining = imgW * imgH; // reset navigation variables
		curPixel = 0;

		compress(initCodeSize + 1, os); // compress and write the pixel data

		os.write(0); // write block terminator
	}

	// Flush the packet to disk, and reset the accumulator
	void flush_char(OutputStream outs) throws IOException
	{
		if (a_count > 0)
		{
			outs.write(a_count);
			outs.write(accum, 0, a_count);
			a_count = 0;
		}
	}

	final int MAXCODE(int n_bits)
	{
		return (1 << n_bits) - 1;
	}

	// ----------------------------------------------------------------------------
	// Return the next pixel from the image
	// ----------------------------------------------------------------------------
	private int nextPixel()
	{
		if (remaining == 0)
			return EOF;

		--remaining;

		byte pix = pixAry[curPixel++];

		return pix & 0xff;
	}

	void output(int code, OutputStream outs) throws IOException
	{
		cur_accum &= masks[cur_bits];

		if (cur_bits > 0)
			cur_accum |= (code << cur_bits);
		else
			cur_accum = code;

		cur_bits += n_bits;

		while (cur_bits >= 8)
		{
			char_out((byte) (cur_accum & 0xff), outs);
			cur_accum >>= 8;
			cur_bits -= 8;
		}

		// If the next entry is going to be too big for the code size,
		// then increase it, if possible.
		if (free_ent > maxcode || clear_flg)
		{
			if (clear_flg)
			{
				maxcode = MAXCODE(n_bits = g_init_bits);
				clear_flg = false;
			}
			else
			{
				++n_bits;
				if (n_bits == maxbits)
					maxcode = maxmaxcode;
				else
					maxcode = MAXCODE(n_bits);
			}
		}

		if (code == EOFCode)
		{
			// At EOF, write the rest of the buffer.
			while (cur_bits > 0)
			{
				char_out((byte) (cur_accum & 0xff), outs);
				cur_accum >>= 8;
				cur_bits -= 8;
			}

			flush_char(outs);
		}
	}
}

GifDecoder:

package com.test;

import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferInt;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.util.ArrayList;

/**
 * <p>
 * </p>
 *
 * @author: wuhongjun
 * @version:1.0
 */
public class GifDecoder
{
	/**
	 * File read status: No errors.
	 */
	public static final int STATUS_OK = 0;

	/**
	 * File read status: Error decoding file (may be partially decoded)
	 */
	public static final int STATUS_FORMAT_ERROR = 1;

	/**
	 * File read status: Unable to open source.
	 */
	public static final int STATUS_OPEN_ERROR = 2;

	protected BufferedInputStream in;
	protected int status;

	protected int width; // full image width
	protected int height; // full image height
	protected boolean gctFlag; // global color table used
	protected int gctSize; // size of global color table
	protected int loopCount = 1; // iterations; 0 = repeat forever

	protected int[] gct; // global color table
	protected int[] lct; // local color table
	protected int[] act; // active color table

	protected int bgIndex; // background color index
	protected int bgColor; // background color
	protected int lastBgColor; // previous bg color
	protected int pixelAspect; // pixel aspect ratio

	protected boolean lctFlag; // local color table flag
	protected boolean interlace; // interlace flag
	protected int lctSize; // local color table size

	protected int ix, iy, iw, ih; // current image rectangle
	protected Rectangle lastRect; // last image rect
	protected BufferedImage image; // current frame
	protected BufferedImage lastImage; // previous frame

	protected byte[] block = new byte[256]; // current data block
	protected int blockSize = 0; // block size

	// last graphic control extension info
	protected int dispose = 0;
	// 0=no action; 1=leave in place; 2=restore to bg; 3=restore to prev
	protected int lastDispose = 0;
	protected boolean transparency = false; // use transparent color
	protected int delay = 0; // delay in milliseconds
	protected int transIndex; // transparent color index

	protected static final int MaxStackSize = 4096;
	// max decoder pixel stack size

	// LZW decoder working arrays
	protected short[] prefix;
	protected byte[] suffix;
	protected byte[] pixelStack;
	protected byte[] pixels;

	protected ArrayList<GifFrame> frames; // frames read from current file
	protected int frameCount;

	static class GifFrame
	{
		public GifFrame(BufferedImage im, int del)
		{
			image = im;
			delay = del;
		}

		public BufferedImage image;
		public int delay;
	}

	/**
	 * Gets display duration for specified frame.
	 *
	 * @param n
	 *            int index of frame
	 * @return delay in milliseconds
	 */
	public int getDelay(int n)
	{
		//
		delay = -1;
		if ((n >= 0) && (n < frameCount))
		{
			delay = (frames.get(n)).delay;
		}
		return delay;
	}

	/**
	 * Gets the number of frames read from file.
	 * 
	 * @return frame count
	 */
	public int getFrameCount()
	{
		return frameCount;
	}

	/**
	 * Gets the first (or only) image read.
	 *
	 * @return BufferedImage containing first frame, or null if none.
	 */
	public BufferedImage getImage()
	{
		return getFrame(0);
	}

	/**
	 * Gets the "Netscape" iteration count, if any.
	 * A count of 0 means repeat indefinitiely.
	 *
	 * @return iteration count if one was specified, else 1.
	 */
	public int getLoopCount()
	{
		return loopCount;
	}

	/**
	 * Creates new frame image from current data (and previous
	 * frames as specified by their disposition codes).
	 */
	protected void setPixels()
	{
		// expose destination image's pixels as int array
		int[] dest = ((DataBufferInt) image.getRaster().getDataBuffer()).getData();

		// fill in starting image contents based on last image's dispose code
		if (lastDispose > 0)
		{
			if (lastDispose == 3)
			{
				// use image before last
				int n = frameCount - 2;
				if (n > 0)
				{
					lastImage = getFrame(n - 1);
				}
				else
				{
					lastImage = null;
				}
			}

			if (lastImage != null)
			{
				int[] prev = ((DataBufferInt) lastImage.getRaster().getDataBuffer()).getData();
				System.arraycopy(prev, 0, dest, 0, width * height);
				// copy pixels

				if (lastDispose == 2)
				{
					// fill last image rect area with background color
					Graphics2D g = image.createGraphics();
					Color c = null;
					if (transparency)
					{
						c = new Color(0, 0, 0, 0); // assume background is transparent
					}
					else
					{
						c = new Color(lastBgColor); // use given background color
					}
					g.setColor(c);
					g.setComposite(AlphaComposite.Src); // replace area
					g.fill(lastRect);
					g.dispose();
				}
			}
		}

		// copy each source line to the appropriate place in the destination
		int pass = 1;
		int inc = 8;
		int iline = 0;
		for (int i = 0; i < ih; i++)
		{
			int line = i;
			if (interlace)
			{
				if (iline >= ih)
				{
					pass++;
					switch (pass)
					{
					case 2:
						iline = 4;
						break;
					case 3:
						iline = 2;
						inc = 4;
						break;
					case 4:
						iline = 1;
						inc = 2;
					}
				}
				line = iline;
				iline += inc;
			}
			line += iy;
			if (line < height)
			{
				int k = line * width;
				int dx = k + ix; // start of line in dest
				int dlim = dx + iw; // end of dest line
				if ((k + width) < dlim)
				{
					dlim = k + width; // past dest edge
				}
				int sx = i * iw; // start of line in source
				while (dx < dlim)
				{
					// map color and insert in destination
					int index = ((int) pixels[sx++]) & 0xff;
					int c = act[index];
					if (c != 0)
					{
						dest[dx] = c;
					}
					dx++;
				}
			}
		}
	}

	/**
	 * Gets the image contents of frame n.
	 *
	 * @return BufferedImage representation of frame, or null if n is invalid.
	 */
	public BufferedImage getFrame(int n)
	{
		BufferedImage im = null;
		if ((n >= 0) && (n < frameCount))
		{
			im = (frames.get(n)).image;
		}
		return im;
	}

	/**
	 * Gets image size.
	 *
	 * @return GIF image dimensions
	 */
	public Dimension getFrameSize()
	{
		return new Dimension(width, height);
	}

	/**
	 * Reads GIF image from stream
	 *
	 * @param is
	 *            BufferedInputStream containing GIF file.
	 * @return read status code (0 = no errors)
	 */
	public int read(BufferedInputStream is)
	{
		init();
		try
		{
			if (is != null)
			{
				in = is;
				readHeader();
				if (!err())
				{
					readContents();
					if (frameCount < 0)
					{
						status = STATUS_FORMAT_ERROR;
					}
				}
			}
			else
			{
				status = STATUS_OPEN_ERROR;
			}
		}
		finally
		{
			if (null != is)
			{
				try
				{
					is.close();
				}
				catch (IOException e)
				{
					e.printStackTrace();
				}
			}
		}
		return status;
	}

	/**
	 * Reads GIF image from stream
	 *
	 * @param is
	 *            InputStream containing GIF file.
	 * @return read status code (0 = no errors)
	 */
	public int read(InputStream is)
	{
		init();
		try
		{
			if (is != null)
			{
				if (!(is instanceof BufferedInputStream))
					is = new BufferedInputStream(is);
				in = (BufferedInputStream) is;
				readHeader();
				if (!err())
				{
					readContents();
					if (frameCount < 0)
					{
						status = STATUS_FORMAT_ERROR;
					}
				}
			}
			else
			{
				status = STATUS_OPEN_ERROR;
			}
		}
		finally
		{
			if (null != is)
			{
				try
				{
					is.close();
				}
				catch (IOException e)
				{
					e.printStackTrace();
				}
			}
		}
		return status;
	}

	/**
	 * Reads GIF file from specified file/URL source
	 * (URL assumed if name contains ":/" or "file:")
	 *
	 * @param name
	 *            String containing source
	 * @return read status code (0 = no errors)
	 */
	public int read(String name)
	{
		status = STATUS_OK;
		try
		{
			name = name.trim().toLowerCase();
			if ((name.contains("file:")) || (name.indexOf(":/") > 0))
			{
				URL url = new URL(name);
				in = new BufferedInputStream(url.openStream());
			}
			else
			{
				in = new BufferedInputStream(new FileInputStream(name));
			}
			status = read(in);
		}
		catch (IOException e)
		{
			status = STATUS_OPEN_ERROR;
		}

		return status;
	}

	/**
	 * Decodes LZW image data into pixel array.
	 * Adapted from John Cristy's ImageMagick.
	 */
	protected void decodeImageData()
	{
		int NullCode = -1;
		int npix = iw * ih;
		int available, clear, code_mask, code_size, end_of_information, in_code, old_code, bits, code, count, i, datum, data_size, first, top, bi, pi;

		if ((pixels == null) || (pixels.length < npix))
		{
			pixels = new byte[npix]; // allocate new pixel array
		}
		if (prefix == null)
			prefix = new short[MaxStackSize];
		if (suffix == null)
			suffix = new byte[MaxStackSize];
		if (pixelStack == null)
			pixelStack = new byte[MaxStackSize + 1];

		// Initialize GIF data stream decoder.

		data_size = read();
		clear = 1 << data_size;
		end_of_information = clear + 1;
		available = clear + 2;
		old_code = NullCode;
		code_size = data_size + 1;
		code_mask = (1 << code_size) - 1;
		for (code = 0; code < clear; code++)
		{
			prefix[code] = 0;
			suffix[code] = (byte) code;
		}

		// Decode GIF pixel stream.

		datum = bits = count = first = top = pi = bi = 0;

		for (i = 0; i < npix;)
		{
			if (top == 0)
			{
				if (bits < code_size)
				{
					// Load bytes until there are enough bits for a code.
					if (count == 0)
					{
						// Read a new data block.
						count = readBlock();
						if (count <= 0)
							break;
						bi = 0;
					}
					datum += (((int) block[bi]) & 0xff) << bits;
					bits += 8;
					bi++;
					count--;
					continue;
				}

				// Get the next code.

				code = datum & code_mask;
				datum >>= code_size;
				bits -= code_size;

				// Interpret the code

				if ((code > available) || (code == end_of_information))
					break;
				if (code == clear)
				{
					// Reset decoder.
					code_size = data_size + 1;
					code_mask = (1 << code_size) - 1;
					available = clear + 2;
					old_code = NullCode;
					continue;
				}
				if (old_code == NullCode)
				{
					pixelStack[top++] = suffix[code];
					old_code = code;
					first = code;
					continue;
				}
				in_code = code;
				if (code == available)
				{
					pixelStack[top++] = (byte) first;
					code = old_code;
				}
				while (code > clear)
				{
					pixelStack[top++] = suffix[code];
					code = prefix[code];
				}
				first = ((int) suffix[code]) & 0xff;

				// Add a new string to the string table,

				if (available >= MaxStackSize)
					break;
				pixelStack[top++] = (byte) first;
				prefix[available] = (short) old_code;
				suffix[available] = (byte) first;
				available++;
				if (((available & code_mask) == 0) && (available < MaxStackSize))
				{
					code_size++;
					code_mask += available;
				}
				old_code = in_code;
			}

			// Pop a pixel off the pixel stack.

			top--;
			pixels[pi++] = pixelStack[top];
			i++;
		}

		for (i = pi; i < npix; i++)
		{
			pixels[i] = 0; // clear missing pixels
		}

	}

	/**
	 * Returns true if an error was encountered during reading/decoding
	 */
	protected boolean err()
	{
		return status != STATUS_OK;
	}

	/**
	 * Initializes or re-initializes reader
	 */
	protected void init()
	{
		status = STATUS_OK;
		frameCount = 0;
		frames = new ArrayList<GifFrame>();
		gct = null;
		lct = null;
	}

	/**
	 * Reads a single byte from the input stream.
	 */
	protected int read()
	{
		int curByte = 0;
		try
		{
			curByte = in.read();
		}
		catch (IOException e)
		{
			status = STATUS_FORMAT_ERROR;
		}
		return curByte;
	}

	/**
	 * Reads next variable length block from input.
	 *
	 * @return number of bytes stored in "buffer"
	 */
	protected int readBlock()
	{
		blockSize = read();
		int n = 0;
		if (blockSize > 0)
		{
			try
			{
				int count = 0;
				while (n < blockSize)
				{
					count = in.read(block, n, blockSize - n);
					if (count == -1)
						break;
					n += count;
				}
			}
			catch (IOException ignored)
			{
			}

			if (n < blockSize)
			{
				status = STATUS_FORMAT_ERROR;
			}
		}
		return n;
	}

	/**
	 * Reads color table as 256 RGB integer values
	 *
	 * @param ncolors
	 *            int number of colors to read
	 * @return int array containing 256 colors (packed ARGB with full alpha)
	 */
	protected int[] readColorTable(int ncolors)
	{
		int nbytes = 3 * ncolors;
		int[] tab = null;
		byte[] c = new byte[nbytes];
		int n = 0;
		try
		{
			n = in.read(c);
		}
		catch (IOException ignored)
		{
		}
		if (n < nbytes)
		{
			status = STATUS_FORMAT_ERROR;
		}
		else
		{
			tab = new int[256]; // max size to avoid bounds checks
			int i = 0;
			int j = 0;
			while (i < ncolors)
			{
				int r = ((int) c[j++]) & 0xff;
				int g = ((int) c[j++]) & 0xff;
				int b = ((int) c[j++]) & 0xff;
				tab[i++] = 0xff000000 | (r << 16) | (g << 8) | b;
			}
		}
		return tab;
	}

	/**
	 * Main file parser. Reads GIF content blocks.
	 */
	protected void readContents()
	{
		// read GIF file content blocks
		boolean done = false;
		while (!(done || err()))
		{
			int code = read();
			switch (code)
			{

			case 0x2C: // image separator
				readImage();
				break;

			case 0x21: // extension
				code = read();
				switch (code)
				{
				case 0xf9: // graphics control extension
					readGraphicControlExt();
					break;

				case 0xff: // application extension
					readBlock();
					String app = "";
					for (int i = 0; i < 11; i++)
					{
						app += (char) block[i];
					}
					if (app.equals("NETSCAPE2.0"))
					{
						readNetscapeExt();
					}
					else
						skip(); // don't care
					break;

				default: // uninteresting extension
					skip();
				}
				break;

			case 0x3b: // terminator
				done = true;
				break;

			case 0x00: // bad byte, but keep going and see what happens
				break;

			default:
				status = STATUS_FORMAT_ERROR;
			}
		}
	}

	/**
	 * Reads Graphics Control Extension values
	 */
	protected void readGraphicControlExt()
	{
		read(); // block size
		int packed = read(); // packed fields
		dispose = (packed & 0x1c) >> 2; // disposal method
		if (dispose == 0)
		{
			dispose = 1; // elect to keep old image if discretionary
		}
		transparency = (packed & 1) != 0;
		delay = readShort() * 10; // delay in milliseconds
		transIndex = read(); // transparent color index
		read(); // block terminator
	}

	/**
	 * Reads GIF file header information.
	 */
	protected void readHeader()
	{
		String id = "";
		for (int i = 0; i < 6; i++)
		{
			id += (char) read();
		}
		if (!id.startsWith("GIF"))
		{
			status = STATUS_FORMAT_ERROR;
			return;
		}

		readLSD();
		if (gctFlag && !err())
		{
			gct = readColorTable(gctSize);
			bgColor = gct[bgIndex];
		}
	}

	/**
	 * Reads next frame image
	 */
	protected void readImage()
	{
		ix = readShort(); // (sub)image position & size
		iy = readShort();
		iw = readShort();
		ih = readShort();

		int packed = read();
		lctFlag = (packed & 0x80) != 0; // 1 - local color table flag
		interlace = (packed & 0x40) != 0; // 2 - interlace flag
		// 3 - sort flag
		// 4-5 - reserved
		lctSize = 2 << (packed & 7); // 6-8 - local color table size

		if (lctFlag)
		{
			lct = readColorTable(lctSize); // read table
			act = lct; // make local table active
		}
		else
		{
			act = gct; // make global table active
			if (bgIndex == transIndex)
				bgColor = 0;
		}
		int save = 0;
		if (transparency)
		{
			save = act[transIndex];
			act[transIndex] = 0; // set transparent color if specified
		}

		if (act == null)
		{
			status = STATUS_FORMAT_ERROR; // no color table defined
		}

		if (err())
			return;

		decodeImageData(); // decode pixel data
		skip();

		if (err())
			return;

		frameCount++;

		// create new image to receive frame data
		image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB_PRE);

		setPixels(); // transfer pixel data to image

		frames.add(new GifFrame(image, delay)); // add image to frame list

		if (transparency)
		{
			act[transIndex] = save;
		}
		resetFrame();

	}

	/**
	 * Reads Logical Screen Descriptor
	 */
	protected void readLSD()
	{

		// logical screen size
		width = readShort();
		height = readShort();

		// packed fields
		int packed = read();
		gctFlag = (packed & 0x80) != 0; // 1 : global color table flag
		// 2-4 : color resolution
		// 5 : gct sort flag
		gctSize = 2 << (packed & 7); // 6-8 : gct size

		bgIndex = read(); // background color index
		pixelAspect = read(); // pixel aspect ratio
	}

	/**
	 * Reads Netscape extenstion to obtain iteration count
	 */
	protected void readNetscapeExt()
	{
		do
		{
			readBlock();
			if (block[0] == 1)
			{
				// loop count sub-block
				int b1 = ((int) block[1]) & 0xff;
				int b2 = ((int) block[2]) & 0xff;
				loopCount = (b2 << 8) | b1;
			}
		}
		while ((blockSize > 0) && !err());
	}

	/**
	 * Reads next 16-bit value, LSB first
	 */
	protected int readShort()
	{
		// read 16-bit value, LSB first
		return read() | (read() << 8);
	}

	/**
	 * Resets frame state for reading next image.
	 */
	protected void resetFrame()
	{
		lastDispose = dispose;
		lastRect = new Rectangle(ix, iy, iw, ih);
		lastImage = image;
		lastBgColor = bgColor;
		int dispose = 0;
		boolean transparency = false;
		int delay = 0;
		lct = null;
	}

	/**
	 * Skips variable length blocks up to and including
	 * next zero length block.
	 */
	protected void skip()
	{
		do
		{
			readBlock();
		}
		while ((blockSize > 0) && !err());
	}
}

GifEncoder:

package com.test;

import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.io.BufferedOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

/**
 * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or
 * more frames.
 * 
 * <pre>
 * Example:
 *    AnimatedGifEncoder e = new AnimatedGifEncoder();
 *    e.start(outputFileName);
 *    e.setDelay(1000);   // 1 frame per sec
 *    e.addFrame(image1);
 *    e.addFrame(image2);
 *    e.finish();
 * </pre>
 * 
 * No copyright asserted on the source code of this class. May be used
 * for any purpose, however, refer to the Unisys LZW patent for restrictions
 * on use of the associated Encoder class. Please forward any corrections
 * to questions at fmsware.com.
 *
 * @author wuhongjun
 * @version 1.03 November 2003
 */
public class GifEncoder
{
	protected int width; // image size
	protected int height;
	protected Color transparent = null; // transparent color if given
	protected int transIndex; // transparent index in color table
	protected int repeat = -1; // no repeat
	protected int delay = 0; // frame delay (hundredths)
	protected boolean started = false; // ready to output frames
	protected OutputStream out;
	protected BufferedImage image; // current frame
	protected byte[] pixels; // BGR byte array from frame
	protected byte[] indexedPixels; // converted frame indexed to palette
	protected int colorDepth; // number of bit planes
	protected byte[] colorTab; // RGB palette
	protected boolean[] usedEntry = new boolean[256]; // active palette entries
	protected int palSize = 7; // color table size (bits-1)
	protected int dispose = -1; // disposal code (-1 = use default)
	protected boolean closeStream = false; // close stream when finished
	protected boolean firstFrame = true;
	protected boolean sizeSet = false; // if false, get size from first frame
	protected int sample = 10; // default sample interval for quantizer

	/**
	 * Sets the delay time between each frame, or changes it
	 * for subsequent frames (applies to last frame added).
	 *
	 * @param ms
	 *            int delay time in milliseconds
	 */
	public void setDelay(int ms)
	{
		delay = Math.round(ms / 10.0f);
	}

	/**
	 * Sets the GIF frame disposal code for the last added frame
	 * and any subsequent frames. Default is 0 if no transparent
	 * color has been set, otherwise 2.
	 * 
	 * @param code
	 *            int disposal code.
	 */
	public void setDispose(int code)
	{
		if (code >= 0)
		{
			dispose = code;
		}
	}

	/**
	 * Sets the number of times the set of GIF frames
	 * should be played. Default is 1; 0 means play
	 * indefinitely. Must be invoked before the first
	 * image is added.
	 *
	 * @param iter
	 *            int number of iterations.
	 * @return
	 */
	public void setRepeat(int iter)
	{
		if (iter >= 0)
		{
			repeat = iter;
		}
	}

	/**
	 * Sets the transparent color for the last added frame
	 * and any subsequent frames.
	 * Since all colors are subject to modification
	 * in the quantization process, the color in the final
	 * palette for each frame closest to the given color
	 * becomes the transparent color for that frame.
	 * May be set to null to indicate no transparent color.
	 *
	 * @param c
	 *            Color to be treated as transparent on display.
	 */
	public void setTransparent(Color c)
	{
		transparent = c;
	}

	/**
	 * Adds next GIF frame. The frame is not written immediately, but is
	 * actually deferred until the next frame is received so that timing
	 * data can be inserted. Invoking <code>finish()</code> flushes all
	 * frames. If <code>setSize</code> was not invoked, the size of the
	 * first image is used for all subsequent frames.
	 *
	 * @param im
	 *            BufferedImage containing frame to write.
	 * @return true if successful.
	 */
	public boolean addFrame(BufferedImage im)
	{
		if ((im == null) || !started)
		{
			return false;
		}
		boolean ok = true;
		try
		{
			if (!sizeSet)
			{
				// use first frame's size
				setSize(im.getWidth(), im.getHeight());
			}
			image = im;
			getImagePixels(); // convert to correct format if necessary
			analyzePixels(); // build color table & map pixels
			if (firstFrame)
			{
				writeLSD(); // logical screen descriptior
				writePalette(); // global color table
				if (repeat >= 0)
				{
					// use NS app extension to indicate reps
					writeNetscapeExt();
				}
			}
			writeGraphicCtrlExt(); // write graphic control extension
			writeImageDesc(); // image descriptor
			if (!firstFrame)
			{
				writePalette(); // local color table
			}
			writePixels(); // encode and write pixel data
			firstFrame = false;
		}
		catch (IOException e)
		{
			ok = false;
		}

		return ok;
	}

	// added by alvaro
	public boolean outFlush()
	{
		boolean ok = true;
		try
		{
			out.flush();
			return ok;
		}
		catch (IOException e)
		{
			ok = false;
		}

		return ok;
	}

	public byte[] getFrameByteArray()
	{
		return ((ByteArrayOutputStream) out).toByteArray();
	}

	/**
	 * Flushes any pending data and closes output file.
	 * If writing to an OutputStream, the stream is not
	 * closed.
	 */
	public boolean finish()
	{
		if (!started)
			return false;
		boolean ok = true;
		started = false;
		try
		{
			out.write(0x3b); // gif trailer
			out.flush();
			if (closeStream)
			{
				out.close();
			}
		}
		catch (IOException e)
		{
			ok = false;
		}

		return ok;
	}

	public void reset()
	{
		// reset for subsequent use
		transIndex = 0;
		out = null;
		image = null;
		pixels = null;
		indexedPixels = null;
		colorTab = null;
		closeStream = false;
		firstFrame = true;
	}

	/**
	 * Sets frame rate in frames per second. Equivalent to
	 * <code>setDelay(1000/fps)</code>.
	 *
	 * @param fps
	 *            float frame rate (frames per second)
	 */
	public void setFrameRate(float fps)
	{
		if (fps != 0f)
		{
			delay = Math.round(100f / fps);
		}
	}

	/**
	 * Sets quality of color quantization (conversion of images
	 * to the maximum 256 colors allowed by the GIF specification).
	 * Lower values (minimum = 1) produce better colors, but slow
	 * processing significantly. 10 is the default, and produces
	 * good color mapping at reasonable speeds. Values greater
	 * than 20 do not yield significant improvements in speed.
	 *
	 * @param quality
	 *            int greater than 0.
	 * @return
	 */
	public void setQuality(int quality)
	{
		if (quality < 1)
			quality = 1;
		sample = quality;
	}

	/**
	 * Sets the GIF frame size. The default size is the
	 * size of the first frame added if this method is
	 * not invoked.
	 *
	 * @param w
	 *            int frame width.
	 * @param h
	 *            int frame width.
	 */
	public void setSize(int w, int h)
	{
		if (started && !firstFrame)
			return;
		width = w;
		height = h;
		if (width < 1)
			width = 320;
		if (height < 1)
			height = 240;
		sizeSet = true;
	}

	/**
	 * Initiates GIF file creation on the given stream. The stream
	 * is not closed automatically.
	 *
	 * @param os
	 *            OutputStream on which GIF images are written.
	 * @return false if initial write failed.
	 */
	public boolean start(OutputStream os)
	{
		if (os == null)
			return false;
		boolean ok = true;
		closeStream = false;
		out = os;
		try
		{
			writeString("GIF89a"); // header
		}
		catch (IOException e)
		{
			ok = false;
		}
		return started = ok;
	}

	/**
	 * Initiates writing of a GIF file with the specified name.
	 *
	 * @param file
	 *            String containing output file name.
	 * @return false if open or initial write failed.
	 */
	public boolean start(String file)
	{
		boolean ok = true;
		try
		{
			out = new BufferedOutputStream(new FileOutputStream(file));
			ok = start(out);
			closeStream = true;
		}
		catch (IOException e)
		{
			ok = false;
		}
		return started = ok;
	}

	/**
	 * Analyzes image colors and creates color map.
	 */
	protected void analyzePixels()
	{
		int len = pixels.length;
		int nPix = len / 3;
		indexedPixels = new byte[nPix];
		Quant nq = new Quant(pixels, len, sample);
		// initialize quantizer
		colorTab = nq.process(); // create reduced palette
		// convert map from BGR to RGB
		for (int i = 0; i < colorTab.length; i += 3)
		{
			byte temp = colorTab[i];
			colorTab[i] = colorTab[i + 2];
			colorTab[i + 2] = temp;
			usedEntry[i / 3] = false;
		}
		// map image pixels to new palette
		int k = 0;
		for (int i = 0; i < nPix; i++)
		{
			int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
			usedEntry[index] = true;
			indexedPixels[i] = (byte) index;
		}
		pixels = null;
		colorDepth = 8;
		palSize = 7;
		// get closest match to transparent color if specified
		if (transparent != null)
		{
			transIndex = findClosest(transparent);
		}
	}

	/**
	 * Returns index of palette color closest to c
	 */
	protected int findClosest(Color c)
	{
		if (colorTab == null)
			return -1;
		int r = c.getRed();
		int g = c.getGreen();
		int b = c.getBlue();
		int minpos = 0;
		int dmin = 256 * 256 * 256;
		int len = colorTab.length;
		for (int i = 0; i < len;)
		{
			int dr = r - (colorTab[i++] & 0xff);
			int dg = g - (colorTab[i++] & 0xff);
			int db = b - (colorTab[i] & 0xff);
			int d = dr * dr + dg * dg + db * db;
			int index = i / 3;
			if (usedEntry[index] && (d < dmin))
			{
				dmin = d;
				minpos = index;
			}
			i++;
		}
		return minpos;
	}

	/**
	 * Extracts image pixels into byte array "pixels"
	 */
	protected void getImagePixels()
	{
		int w = image.getWidth();
		int h = image.getHeight();
		int type = image.getType();
		if ((w != width) || (h != height) || (type != BufferedImage.TYPE_3BYTE_BGR))
		{
			// create new image with right size/format
			BufferedImage temp = new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
			Graphics2D g = temp.createGraphics();
			g.drawImage(image, 0, 0, null);
			image = temp;
		}
		pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
	}

	/**
	 * Writes Graphic Control Extension
	 */
	protected void writeGraphicCtrlExt() throws IOException
	{
		out.write(0x21); // extension introducer
		out.write(0xf9); // GCE label
		out.write(4); // data block size
		int transp, disp;
		if (transparent == null)
		{
			transp = 0;
			disp = 0; // dispose = no action
		}
		else
		{
			transp = 1;
			disp = 2; // force clear if using transparent color
		}
		if (dispose >= 0)
		{
			disp = dispose & 7; // user override
		}
		disp <<= 2;

		// packed fields
		out.write(0 | // 1:3 reserved
				disp | // 4:6 disposal
				0 | // 7 user input - 0 = none
				transp); // 8 transparency flag

		writeShort(delay); // delay x 1/100 sec
		out.write(transIndex); // transparent color index
		out.write(0); // block terminator
	}

	/**
	 * Writes Image Descriptor
	 */
	protected void writeImageDesc() throws IOException
	{
		out.write(0x2c); // image separator
		writeShort(0); // image position x,y = 0,0
		writeShort(0);
		writeShort(width); // image size
		writeShort(height);
		// packed fields
		if (firstFrame)
		{
			// no LCT - GCT is used for first (or only) frame
			out.write(0);
		}
		else
		{
			// specify normal LCT
			out.write(0x80 | // 1 local color table 1=yes
					0 | // 2 interlace - 0=no
					0 | // 3 sorted - 0=no
					0 | // 4-5 reserved
					palSize); // 6-8 size of color table
		}
	}

	/**
	 * Writes Logical Screen Descriptor
	 */
	protected void writeLSD() throws IOException
	{
		// logical screen size
		writeShort(width);
		writeShort(height);
		// packed fields
		out.write((0x80 | // 1 : global color table flag = 1 (gct used)
				0x70 | // 2-4 : color resolution = 7
				0x00 | // 5 : gct sort flag = 0
				palSize)); // 6-8 : gct size

		out.write(0); // background color index
		out.write(0); // pixel aspect ratio - assume 1:1
	}

	/**
	 * Writes Netscape application extension to define
	 * repeat count.
	 */
	protected void writeNetscapeExt() throws IOException
	{
		out.write(0x21); // extension introducer
		out.write(0xff); // app extension label
		out.write(11); // block size
		writeString("NETSCAPE" + "2.0"); // app id + auth code
		out.write(3); // sub-block size
		out.write(1); // loop sub-block id
		writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
		out.write(0); // block terminator
	}

	/**
	 * Writes color table
	 */
	protected void writePalette() throws IOException
	{
		out.write(colorTab, 0, colorTab.length);
		int n = (3 * 256) - colorTab.length;
		for (int i = 0; i < n; i++)
		{
			out.write(0);
		}
	}

	/**
	 * Encodes and writes pixel data
	 */
	protected void writePixels() throws IOException
	{
		Encoder encoder = new Encoder(width, height, indexedPixels, colorDepth);
		encoder.encode(out);
	}

	/**
	 * Write 16-bit value to output stream, LSB first
	 */
	protected void writeShort(int value) throws IOException
	{
		out.write(value & 0xff);
		out.write((value >> 8) & 0xff);
	}

	/**
	 * Writes string to output stream
	 */
	protected void writeString(String s) throws IOException
	{
		for (int i = 0; i < s.length(); i++)
		{
			out.write((byte) s.charAt(i));
		}
	}
}

Quant:

package com.test;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;

/**
 * <p>
 * </p>
 *
 * @author: wuhongjun
 * @version:1.0
 */
public class Quant
{
	protected static final int netsize = 256; /* number of colours used */

	/* four primes near 500 - assume no image has a length so large */
	/* that it is divisible by all four primes */
	protected static final int prime1 = 499;
	protected static final int prime2 = 491;
	protected static final int prime3 = 487;
	protected static final int prime4 = 503;

	protected static final int minpicturebytes = (3 * prime4);
	/* minimum size for input image */

	/*
	 * Program Skeleton
	 * ----------------
	 * [select samplefac in range 1..30]
	 * [read image from input file]
	 * pic = (unsigned char*) malloc(3*width*height);
	 * initnet(pic,3*width*height,samplefac);
	 * learn();
	 * unbiasnet();
	 * [write output image header, using writecolourmap(f)]
	 * inxbuild();
	 * write output image using inxsearch(b,g,r)
	 */

	/*
	 * Network Definitions
	 * -------------------
	 */

	protected static final int maxnetpos = (netsize - 1);
	protected static final int netbiasshift = 4; /* bias for colour values */
	protected static final int ncycles = 100; /* no. of learning cycles */

	/* defs for freq and bias */
	protected static final int intbiasshift = 16; /* bias for fractions */
	protected static final int intbias = (((int) 1) << intbiasshift);
	protected static final int gammashift = 10; /* gamma = 1024 */
	protected static final int gamma = (((int) 1) << gammashift);
	protected static final int betashift = 10;
	protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
	protected static final int betagamma = (intbias << (gammashift - betashift));

	/* defs for decreasing radius factor */
	protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
	protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
	protected static final int radiusbias = (((int) 1) << radiusbiasshift);
	protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
	protected static final int radiusdec = 30; /* factor of 1/30 each cycle */

	/* defs for decreasing alpha factor */
	protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
	protected static final int initalpha = (((int) 1) << alphabiasshift);

	protected int alphadec; /* biased by 10 bits */

	/* radbias and alpharadbias used for radpower calculation */
	protected static final int radbiasshift = 8;
	protected static final int radbias = (((int) 1) << radbiasshift);
	protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
	protected static final int alpharadbias = (((int) 1) << alpharadbshift);

	/*
	 * Types and Global Variables
	 * --------------------------
	 */

	protected byte[] thepicture; /* the input image itself */
	protected int lengthcount; /* lengthcount = H*W*3 */

	protected int samplefac; /* sampling factor 1..30 */

	// typedef int pixel[4]; /* BGRc */
	protected int[][] network; /* the network itself - [netsize][4] */

	protected int[] netindex = new int[256];
	/* for network lookup - really 256 */

	protected int[] bias = new int[netsize];
	/* bias and freq arrays for learning */
	protected int[] freq = new int[netsize];
	protected int[] radpower = new int[initrad];
	/* radpower for precomputation */

	/*
	 * Initialise network in range (0,0,0) to (255,255,255) and set parameters
	 * -----------------------------------------------------------------------
	 */
	public Quant(byte[] thepic, int len, int sample)
	{

		int i;
		int[] p;

		thepicture = thepic;
		lengthcount = len;
		samplefac = sample;

		network = new int[netsize][];
		for (i = 0; i < netsize; i++)
		{
			network[i] = new int[4];
			p = network[i];
			p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
			freq[i] = intbias / netsize; /* 1/netsize */
			bias[i] = 0;
		}
	}

	public byte[] colorMap()
	{
		byte[] map = new byte[3 * netsize];
		int[] index = new int[netsize];
		for (int i = 0; i < netsize; i++)
			index[network[i][3]] = i;
		int k = 0;
		for (int i = 0; i < netsize; i++)
		{
			int j = index[i];
			map[k++] = (byte) (network[j][0]);
			map[k++] = (byte) (network[j][1]);
			map[k++] = (byte) (network[j][2]);
		}
		return map;
	}

	/*
	 * Insertion sort of network and building of netindex[0..255] (to do after unbias)
	 * -------------------------------------------------------------------------------
	 */
	public void inxbuild()
	{

		int i, j, smallpos, smallval;
		int[] p;
		int[] q;
		int previouscol, startpos;

		previouscol = 0;
		startpos = 0;
		for (i = 0; i < netsize; i++)
		{
			p = network[i];
			smallpos = i;
			smallval = p[1]; /* index on g */
			/* find smallest in i..netsize-1 */
			for (j = i + 1; j < netsize; j++)
			{
				q = network[j];
				if (q[1] < smallval)
				{ /* index on g */
					smallpos = j;
					smallval = q[1]; /* index on g */
				}
			}
			q = network[smallpos];
			/* swap p (i) and q (smallpos) entries */
			if (i != smallpos)
			{
				j = q[0];
				q[0] = p[0];
				p[0] = j;
				j = q[1];
				q[1] = p[1];
				p[1] = j;
				j = q[2];
				q[2] = p[2];
				p[2] = j;
				j = q[3];
				q[3] = p[3];
				p[3] = j;
			}
			/* smallval entry is now in position i */
			if (smallval != previouscol)
			{
				netindex[previouscol] = (startpos + i) >> 1;
				for (j = previouscol + 1; j < smallval; j++)
					netindex[j] = i;
				previouscol = smallval;
				startpos = i;
			}
		}
		netindex[previouscol] = (startpos + maxnetpos) >> 1;
		for (j = previouscol + 1; j < 256; j++)
			netindex[j] = maxnetpos; /* really 256 */
	}

	/*
	 * Main Learning Loop
	 * ------------------
	 */
	public void learn()
	{

		int i, j, b, g, r;
		int radius, rad, alpha, step, delta, samplepixels;
		byte[] p;
		int pix, lim;

		if (lengthcount < minpicturebytes)
			samplefac = 1;
		alphadec = 30 + ((samplefac - 1) / 3);
		p = thepicture;
		pix = 0;
		lim = lengthcount;
		samplepixels = lengthcount / (3 * samplefac);
		delta = samplepixels / ncycles;
		alpha = initalpha;
		radius = initradius;

		rad = radius >> radiusbiasshift;
		if (rad <= 1)
			rad = 0;
		for (i = 0; i < rad; i++)
			radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));

		// fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);

		if (lengthcount < minpicturebytes)
			step = 3;
		else if ((lengthcount % prime1) != 0)
			step = 3 * prime1;
		else
		{
			if ((lengthcount % prime2) != 0)
				step = 3 * prime2;
			else
			{
				if ((lengthcount % prime3) != 0)
					step = 3 * prime3;
				else
					step = 3 * prime4;
			}
		}

		i = 0;
		while (i < samplepixels)
		{
			b = (p[pix + 0] & 0xff) << netbiasshift;
			g = (p[pix + 1] & 0xff) << netbiasshift;
			r = (p[pix + 2] & 0xff) << netbiasshift;
			j = contest(b, g, r);

			altersingle(alpha, j, b, g, r);
			if (rad != 0)
				alterneigh(rad, j, b, g, r); /* alter neighbours */

			pix += step;
			if (pix >= lim)
				pix -= lengthcount;

			i++;
			if (delta == 0)
				delta = 1;
			if (i % delta == 0)
			{
				alpha -= alpha / alphadec;
				radius -= radius / radiusdec;
				rad = radius >> radiusbiasshift;
				if (rad <= 1)
					rad = 0;
				for (j = 0; j < rad; j++)
					radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
			}
		}
		// fprintf(stderr,"finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha);
	}

	/*
	 * Search for BGR values 0..255 (after net is unbiased) and return colour index
	 * ----------------------------------------------------------------------------
	 */
	public int map(int b, int g, int r)
	{

		int i, j, dist, a, bestd;
		int[] p;
		int best;

		bestd = 1000; /* biggest possible dist is 256*3 */
		best = -1;
		i = netindex[g]; /* index on g */
		j = i - 1; /* start at netindex[g] and work outwards */

		while ((i < netsize) || (j >= 0))
		{
			if (i < netsize)
			{
				p = network[i];
				dist = p[1] - g; /* inx key */
				if (dist >= bestd)
					i = netsize; /* stop iter */
				else
				{
					i++;
					if (dist < 0)
						dist = -dist;
					a = p[0] - b;
					if (a < 0)
						a = -a;
					dist += a;
					if (dist < bestd)
					{
						a = p[2] - r;
						if (a < 0)
							a = -a;
						dist += a;
						if (dist < bestd)
						{
							bestd = dist;
							best = p[3];
						}
					}
				}
			}
			if (j >= 0)
			{
				p = network[j];
				dist = g - p[1]; /* inx key - reverse dif */
				if (dist >= bestd)
					j = -1; /* stop iter */
				else
				{
					j--;
					if (dist < 0)
						dist = -dist;
					a = p[0] - b;
					if (a < 0)
						a = -a;
					dist += a;
					if (dist < bestd)
					{
						a = p[2] - r;
						if (a < 0)
							a = -a;
						dist += a;
						if (dist < bestd)
						{
							bestd = dist;
							best = p[3];
						}
					}
				}
			}
		}
		return (best);
	}

	public byte[] process()
	{
		learn();
		unbiasnet();
		inxbuild();
		return colorMap();
	}

	/*
	 * Unbias network to give byte values 0..255 and record position i to prepare for sort
	 * -----------------------------------------------------------------------------------
	 */
	public void unbiasnet()
	{

		int i, j;

		for (i = 0; i < netsize; i++)
		{
			network[i][0] >>= netbiasshift;
			network[i][1] >>= netbiasshift;
			network[i][2] >>= netbiasshift;
			network[i][3] = i; /* record colour no */
		}
	}

	/*
	 * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
	 * ---------------------------------------------------------------------------------
	 */
	protected void alterneigh(int rad, int i, int b, int g, int r)
	{

		int j, k, lo, hi, a, m;
		int[] p;

		lo = i - rad;
		if (lo < -1)
			lo = -1;
		hi = i + rad;
		if (hi > netsize)
			hi = netsize;

		j = i + 1;
		k = i - 1;
		m = 1;
		while ((j < hi) || (k > lo))
		{
			a = radpower[m++];
			if (j < hi)
			{
				p = network[j++];
				try
				{
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				}
				catch (Exception e)
				{
				} // prevents 1.3 miscompilation
			}
			if (k > lo)
			{
				p = network[k--];
				try
				{
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				}
				catch (Exception e)
				{
				}
			}
		}
	}

	/*
	 * Move neuron i towards biased (b,g,r) by factor alpha
	 * ----------------------------------------------------
	 */
	protected void altersingle(int alpha, int i, int b, int g, int r)
	{

		/* alter hit neuron */
		int[] n = network[i];
		n[0] -= (alpha * (n[0] - b)) / initalpha;
		n[1] -= (alpha * (n[1] - g)) / initalpha;
		n[2] -= (alpha * (n[2] - r)) / initalpha;
	}

	/*
	 * Search for biased BGR values
	 * ----------------------------
	 */
	protected int contest(int b, int g, int r)
	{

		/* finds closest neuron (min dist) and updates freq */
		/* finds best neuron (min dist-bias) and returns position */
		/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
		/* bias[i] = gamma*((1/netsize)-freq[i]) */

		int i, dist, a, biasdist, betafreq;
		int bestpos, bestbiaspos, bestd, bestbiasd;
		int[] n;

		bestd = ~(((int) 1) << 31);
		bestbiasd = bestd;
		bestpos = -1;
		bestbiaspos = bestpos;

		for (i = 0; i < netsize; i++)
		{
			n = network[i];
			dist = n[0] - b;
			if (dist < 0)
				dist = -dist;
			a = n[1] - g;
			if (a < 0)
				a = -a;
			dist += a;
			a = n[2] - r;
			if (a < 0)
				a = -a;
			dist += a;
			if (dist < bestd)
			{
				bestd = dist;
				bestpos = i;
			}
			biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
			if (biasdist < bestbiasd)
			{
				bestbiasd = biasdist;
				bestbiaspos = i;
			}
			betafreq = (freq[i] >> betashift);
			freq[i] -= betafreq;
			bias[i] += (betafreq << gammashift);
		}
		freq[bestpos] += beta;
		bias[bestpos] -= betagamma;
		return (bestbiaspos);
	}
}

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!