问题
I need to create a UDF to be used in pyspark python which uses a java object for its internal calculations.
If it were a simple python I would do something like:
def f(x):
return 7
fudf = pyspark.sql.functions.udf(f,pyspark.sql.types.IntegerType())
and call it using:
df = sqlContext.range(0,5)
df2 = df.withColumn("a",fudf(df.id)).show()
However, the implementation of the function I need is in java and not in python. I need to wrap it somehow so I can call it in a similar way from python.
My first try was to do implement the java object, then wrap it in python in pyspark and convert that to UDF. That failed with serialization error.
Java code:
package com.test1.test2;
public class TestClass1 {
Integer internalVal;
public TestClass1(Integer val1) {
internalVal = val1;
}
public Integer do_something(Integer val) {
return internalVal;
}
}
pyspark code:
from py4j.java_gateway import java_import
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
java_import(sc._gateway.jvm, "com.test1.test2.TestClass1")
a = sc._gateway.jvm.com.test1.test2.TestClass1(7)
audf = udf(a,IntegerType())
error:
---------------------------------------------------------------------------
Py4JError Traceback (most recent call last)
<ipython-input-2-9756772ab14f> in <module>()
4 java_import(sc._gateway.jvm, "com.test1.test2.TestClass1")
5 a = sc._gateway.jvm.com.test1.test2.TestClass1(7)
----> 6 audf = udf(a,IntegerType())
/usr/local/spark/python/pyspark/sql/functions.py in udf(f, returnType)
1595 [Row(slen=5), Row(slen=3)]
1596 """
-> 1597 return UserDefinedFunction(f, returnType)
1598
1599 blacklist = ['map', 'since', 'ignore_unicode_prefix']
/usr/local/spark/python/pyspark/sql/functions.py in __init__(self, func, returnType, name)
1556 self.returnType = returnType
1557 self._broadcast = None
-> 1558 self._judf = self._create_judf(name)
1559
1560 def _create_judf(self, name):
/usr/local/spark/python/pyspark/sql/functions.py in _create_judf(self, name)
1565 command = (func, None, ser, ser)
1566 sc = SparkContext.getOrCreate()
-> 1567 pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command, self)
1568 ctx = SQLContext.getOrCreate(sc)
1569 jdt = ctx._ssql_ctx.parseDataType(self.returnType.json())
/usr/local/spark/python/pyspark/rdd.py in _prepare_for_python_RDD(sc, command, obj)
2297 # the serialized command will be compressed by broadcast
2298 ser = CloudPickleSerializer()
-> 2299 pickled_command = ser.dumps(command)
2300 if len(pickled_command) > (1 << 20): # 1M
2301 # The broadcast will have same life cycle as created PythonRDD
/usr/local/spark/python/pyspark/serializers.py in dumps(self, obj)
426
427 def dumps(self, obj):
--> 428 return cloudpickle.dumps(obj, 2)
429
430
/usr/local/spark/python/pyspark/cloudpickle.py in dumps(obj, protocol)
644
645 cp = CloudPickler(file,protocol)
--> 646 cp.dump(obj)
647
648 return file.getvalue()
/usr/local/spark/python/pyspark/cloudpickle.py in dump(self, obj)
105 self.inject_addons()
106 try:
--> 107 return Pickler.dump(self, obj)
108 except RuntimeError as e:
109 if 'recursion' in e.args[0]:
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in dump(self, obj)
222 if self.proto >= 2:
223 self.write(PROTO + chr(self.proto))
--> 224 self.save(obj)
225 self.write(STOP)
226
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save(self, obj)
284 f = self.dispatch.get(t)
285 if f:
--> 286 f(self, obj) # Call unbound method with explicit self
287 return
288
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save_tuple(self, obj)
566 write(MARK)
567 for element in obj:
--> 568 save(element)
569
570 if id(obj) in memo:
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save(self, obj)
284 f = self.dispatch.get(t)
285 if f:
--> 286 f(self, obj) # Call unbound method with explicit self
287 return
288
/usr/local/spark/python/pyspark/cloudpickle.py in save_function(self, obj, name)
191 if islambda(obj) or obj.__code__.co_filename == '<stdin>' or themodule is None:
192 #print("save global", islambda(obj), obj.__code__.co_filename, modname, themodule)
--> 193 self.save_function_tuple(obj)
194 return
195 else:
/usr/local/spark/python/pyspark/cloudpickle.py in save_function_tuple(self, func)
234 # create a skeleton function object and memoize it
235 save(_make_skel_func)
--> 236 save((code, closure, base_globals))
237 write(pickle.REDUCE)
238 self.memoize(func)
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save(self, obj)
284 f = self.dispatch.get(t)
285 if f:
--> 286 f(self, obj) # Call unbound method with explicit self
287 return
288
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save_tuple(self, obj)
552 if n <= 3 and proto >= 2:
553 for element in obj:
--> 554 save(element)
555 # Subtle. Same as in the big comment below.
556 if id(obj) in memo:
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save(self, obj)
284 f = self.dispatch.get(t)
285 if f:
--> 286 f(self, obj) # Call unbound method with explicit self
287 return
288
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save_list(self, obj)
604
605 self.memoize(obj)
--> 606 self._batch_appends(iter(obj))
607
608 dispatch[ListType] = save_list
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in _batch_appends(self, items)
637 write(MARK)
638 for x in tmp:
--> 639 save(x)
640 write(APPENDS)
641 elif n:
/home/mendea3/anaconda2/lib/python2.7/pickle.pyc in save(self, obj)
304 reduce = getattr(obj, "__reduce_ex__", None)
305 if reduce:
--> 306 rv = reduce(self.proto)
307 else:
308 reduce = getattr(obj, "__reduce__", None)
/usr/local/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()
/usr/local/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
310 raise Py4JError(
311 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
--> 312 format(target_id, ".", name, value))
313 else:
314 raise Py4JError(
Py4JError: An error occurred while calling o18.__getnewargs__. Trace:
py4j.Py4JException: Method __getnewargs__([]) does not exist
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:335)
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:344)
at py4j.Gateway.invoke(Gateway.java:252)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
EDIT: I also tried to make the java class serializable but to no avail.
My second attempt was to define the UDF in java to begin with but that failed as I am not sure how to correctly wrap it:
java code: package com.test1.test2;
import org.apache.spark.sql.api.java.UDF1;
public class TestClassUdf implements UDF1<Integer, Integer> {
Integer retval;
public TestClassUdf(Integer val) {
retval = val;
}
@Override
public Integer call(Integer arg0) throws Exception {
return retval;
}
}
but how would I use it? I tried:
from py4j.java_gateway import java_import
java_import(sc._gateway.jvm, "com.test1.test2.TestClassUdf")
a = sc._gateway.jvm.com.test1.test2.TestClassUdf(7)
dfint = sqlContext.range(0,15)
df = dfint.withColumn("a",a(dfint.id))
but I get:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-5-514811090b5f> in <module>()
3 a = sc._gateway.jvm.com.test1.test2.TestClassUdf(7)
4 dfint = sqlContext.range(0,15)
----> 5 df = dfint.withColumn("a",a(dfint.id))
TypeError: 'JavaObject' object is not callable
and I tried to use a.call instead of a:
df = dfint.withColumn("a",a.call(dfint.id))
but got: --------------------------------------------------------------------------- TypeError Traceback (most recent call last) in () 3 a = sc._gateway.jvm.com.test1.test2.TestClassUdf(7) 4 dfint = sqlContext.range(0,15) ----> 5 df = dfint.withColumn("a",a.call(dfint.id))
/usr/local/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
796 def __call__(self, *args):
797 if self.converters is not None and len(self.converters) > 0:
--> 798 (new_args, temp_args) = self._get_args(args)
799 else:
800 new_args = args
/usr/local/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in _get_args(self, args)
783 for converter in self.gateway_client.converters:
784 if converter.can_convert(arg):
--> 785 temp_arg = converter.convert(arg, self.gateway_client)
786 temp_args.append(temp_arg)
787 new_args.append(temp_arg)
/usr/local/spark/python/lib/py4j-0.9-src.zip/py4j/java_collections.py in convert(self, object, gateway_client)
510 HashMap = JavaClass("java.util.HashMap", gateway_client)
511 java_map = HashMap()
--> 512 for key in object.keys():
513 java_map[key] = object[key]
514 return java_map
TypeError: 'Column' object is not callable
Any help would be appriciated.
回答1:
I got this working with the help of another question (and answer) of your own about UDAFs.
Spark provides a udf()
method for wrapping Scala FunctionN
, so we can wrap the Java function in Scala and use that. Your Java method needs to be static or on a class that implements Serializable
.
package com.example
import org.apache.spark.sql.UserDefinedFunction
import org.apache.spark.sql.functions.udf
class MyUdf extends Serializable {
def getUdf: UserDefinedFunction = udf(() => MyJavaClass.MyJavaMethod())
}
Usage in PySpark:
def my_udf():
from pyspark.sql.column import Column, _to_java_column, _to_seq
pcls = "com.example.MyUdf"
jc = sc._jvm.java.lang.Thread.currentThread() \
.getContextClassLoader().loadClass(pcls).newInstance().getUdf().apply
return Column(jc(_to_seq(sc, [], _to_java_column)))
rdd1 = sc.parallelize([{'c1': 'a'}, {'c1': 'b'}, {'c1': 'c'}])
df1 = rdd1.toDF()
df2 = df1.withColumn('mycol', my_udf())
As with the UDAF in your other question and answer, we can pass columns into it with return Column(jc(_to_seq(sc, ["col1", "col2"], _to_java_column)))
来源:https://stackoverflow.com/questions/36171208/implement-a-java-udf-and-call-it-from-pyspark