Filter_bufferevent是一种基于bufferevent的过滤器,其本身也是一个bufferevent。能够对底层bufferevent输入缓存区中的数据进行操作(加/解密等)后再读取,同样也能在一定的操作后再将数据写入底层bufferevent的输出缓存区。需要注意的是,在创建Filter_bufferevent后,底层bufferevent的读写回调函数就不会再生效了,而缓存区的回调函数依旧有效。
Filter_bufferevent相关函数
struct bufferevent bufferevent_filter_new (struct bufferevent underlying, bufferevent_filter_cb input_filter, bufferevent_filter_cb output_filter, int options, void(free_context)(void ), void *ctx):创建一个过滤器,参数列表如下:
- struct bufferevent *underlying:需要过滤的底层bufferevent;
- bufferevent_filter_cb input_filter/bufferevent_filter_cb output_filter:对底层bufferevent的输入/输出缓存器进行操作的过滤器函数,这两个过滤器函数会在其源缓存区中有数据时触发;
- int option:关于bufferevent的设置;
- void(free_context)(void ):释放时调用的函数,返回值及参数列表均为空;
- void *ctx:传递给过滤器函数的参数;
typedef enum bufferevent_filter_result(* bufferevent_filter_cb)(struct evbuffer src, struct evbuffer dst, ev_ssize_t dst_limit, enum bufferevent_flush_mode mode, void *ctx):需要自定义,并传送给bufferevent_filter_new()的过滤器函数,参数列表如下:
- struct evbuffer *src:需要处理的数据的源缓存区,即从这个缓存中取需要过滤的数据;
- struct evbuffer *dst:需要处理的数据的目的缓存区,即将处理后的数据放入这个缓存中;
- ev_ssize_t dst_limit:目标缓存区的长度,过滤器可以忽略这个参数;
- enum bufferevent_flush_mode mode:过滤模式,来告诉过滤器数据是因为什么进过滤器的。
- void *ctx:上一个函数中给定的参数;
- typedef enum bufferevent_filter_result:过滤函数的返回值,包括:BEV_OK(正常);BEV_NEED_MORE(需要继续读数据);BEV_ERROR(发生错误);
过滤器的源/目缓存区
过滤器函数的参数列表中包含了过滤器的源/目的缓存区。而对于输入/输出过滤器,源/目缓存区是不同,而这对理解过滤器至关重要。可以使用一段简单的程序来确定过滤器的参数与底层bufferevent及Filter_bufferevent的关系,客户端正常连接服务器并发生数据,服务器创建一个Filter_bufferevent并两个bufferevent的一共4个缓存区,过滤器则输出源/目的缓存区的地址。
- 客户端:
#include <stdio.h> #include <signal.h> #include <unistd.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <string.h> #include <event2/event.h> #include <event2/bufferevent.h> void read_cb(struct bufferevent *bev, void *arg) { char buf[1024] = {0}; bufferevent_read(bev, buf, sizeof(buf)); printf(buf); } void write_cb(struct bufferevent *bev, void *arg) { printf("我是写缓冲区的回调函数...您已发送\n"); } void event_cb(struct bufferevent *bev, short events, void *arg) { if (events & BEV_EVENT_EOF) { printf("connection closed\n"); } else if(events & BEV_EVENT_ERROR) { printf("some other error\n"); } else if(events & BEV_EVENT_CONNECTED) { printf("服务器已连接\n"); return; } bufferevent_free(bev); printf("free bufferevent...\n"); } void send_cb(evutil_socket_t fd, short what, void *arg) { char buf[1024] = {0}; struct bufferevent* bev = (struct bufferevent*)arg; read(fd, buf, sizeof(buf)); bufferevent_write(bev, buf, strlen(buf)-1); } void signal_cb(evutil_socket_t sig, short events, void *user_data) { struct event_base *base = user_data; struct timeval delay = { 2, 0 }; printf("Caught an interrupt signal; exiting cleanly in two seconds.\n"); event_base_loopexit(base, &delay); } int main(int argc, const char* argv[]) { struct event_base* base; base = event_base_new(); struct bufferevent* bev; bev = bufferevent_socket_new(base, -1, BEV_OPT_CLOSE_ON_FREE); // 连接服务器 struct sockaddr_in serv; memset(&serv, 0, sizeof(serv)); serv.sin_family = AF_INET; serv.sin_port = htons(9995); evutil_inet_pton(AF_INET, "127.0.0.1", &serv.sin_addr.s_addr); bufferevent_socket_connect(bev, (struct sockaddr*)&serv, sizeof(serv)); // 设置回调 bufferevent_setcb(bev, read_cb, NULL, event_cb, NULL); bufferevent_enable(bev, EV_READ | EV_PERSIST); // 创建一个事件 struct event* ev = event_new(base, STDIN_FILENO, EV_READ|EV_PERSIST, send_cb, bev); //for Ctrl+C struct event *signal_event; signal_event = evsignal_new(base, SIGINT, signal_cb, (void *)base); event_add(signal_event, NULL); event_add(ev, NULL); event_base_dispatch(base); event_base_free(base); return 0; }
- 服务端:
#include <event2/bufferevent.h> #include <event2/event.h> #include <event2/buffer.h> #include <arpa/inet.h>// interner address #include <unistd.h>//os #include <stdio.h> #include <malloc.h> #include <string.h> #include <event2/listener.h> #include <sys/types.h> #include <errno.h> enum bufferevent_filter_result input_cb(struct evbuffer *src, struct evbuffer *dst, ev_ssize_t dst_limit, enum bufferevent_flush_mode mode, void *ctx) { //输出缓存区的地址 printf("the src and dst in fun input_cb: %ld, %ld\n", src, dst); //清空源缓存区,避免被一直调用 evbuffer_drain(src, 1024); return BEV_OK; } enum bufferevent_filter_result output_cb(struct evbuffer *src, struct evbuffer *dst, ev_ssize_t dst_limit, enum bufferevent_flush_mode mode, void *ctx) { //输出缓存区的地址 printf("the src and dst in fun output_cb: %ld, %ld\n", src, dst); //清空源缓存区,避免被一直调用 evbuffer_drain(src, 1024); return BEV_OK; } void read_cb(struct bufferevent *bev, void *arg) { char buf[1024] = {0}; bufferevent_read(bev, buf, 1024); printf("%s\n", buf); } void write_cb(struct bufferevnet *bev, void *arg) { printf("write_cb\n"); } void listener_cb(struct evconnlistener *listener, evutil_socket_t fd, struct sockaddr *addr, int len, void *ptr) { struct sockaddr_in *caddr = (struct sockaddr_in *)addr; struct event_base *base = (struct event_base *)ptr; //init bufferevent struct bufferevent *bev; bev = bufferevent_socket_new(base, fd, BEV_OPT_CLOSE_ON_FREE); bufferevent_setcb(bev, NULL, NULL, NULL, NULL); bufferevent_enable(bev, EV_WRITE | EV_READ); //bufferevent_write(bev, "Hello client!", strlen("Hello client!")+1); struct bufferevent *filter_bev = bufferevent_filter_new(bev, input_cb, output_cb, BEV_OPT_CLOSE_ON_FREE, NULL, NULL); //设置Filter_bufferevent的读写函数 bufferevent_setcb(filter_bev, read_cb, write_cb, NULL, NULL); bufferevent_enable(filter_bev, EV_READ|EV_WRITE); //输出底层bufferevent的缓存区地址 printf("the input evbuffer and output evbuffer of underlying bufferevent: %ld, %ld\n", bufferevent_get_input(bev), bufferevent_get_output(bev)); //输出Filter_bufferevent的缓存区地址 printf("the input evbuffer and output evbuffer of filter bufferevent: %ld, %ld\n", bufferevent_get_input(filter_bev), bufferevent_get_output(filter_bev)); //先Filter_bufferevent写 bufferevent_write(filter_bev, "abc", sizeof("abc")); } int main(int argc, const char *argv[]) { //init server struct sockaddr_in servaddr; memset(&servaddr, 0, sizeof(servaddr)); servaddr.sin_family = AF_INET; servaddr.sin_port = htons(9995); servaddr.sin_addr.s_addr = htonl(INADDR_ANY); //init event_base struct event_base *base; base = event_base_new(); //init linstener struct evconnlistener *listener; listener = evconnlistener_new_bind(base, listener_cb, base, LEV_OPT_CLOSE_ON_FREE|LEV_OPT_REUSEABLE_PORT, 36, (struct socketaddr *)&servaddr, sizeof(servaddr)); event_base_dispatch(base); evconnlistener_free(listener); event_base_free(base); }
服务端运行结果:
sunminming@sunminming:~/libevent/filter$ ./addrdemo the input evbuffer and output evbuffer of underlying bufferevent: 94493149330208, 94493149330352 the input evbuffer and output evbuffer of filter bufferevent: 94493149331184, 94493149331328 the src and dst in fun output_cb: 94493149331328, 94493149330352 the src and dst in fun input_cb: 94493149330208, 94493149331184
可以看出来:
- 输入过滤器中的源缓存区与底层buferevent的输入缓存区地址一致,目的缓存区与Filter_bufferevent的输入缓存区地址一致。
- 输出过滤器中的源缓存区与Filter_bufferevent的输出缓存区地址一致,目的缓存区与底层bufferevent的输出缓存区地址一致。
因此,4个缓存区与2个过滤器函数的关系可以画成下图:
Demo
之后就是过滤器正常使用的Demo:输入过滤器会将底层bufferevent的接受到的数据加1处理,而输出过滤器则会将输出的数据复制一份加在原数据的末尾。
- 服务端:
#include <event2/bufferevent.h> #include <event2/event.h> #include <event2/buffer.h> #include <arpa/inet.h>// interner address #include <unistd.h>//os #include <stdio.h> #include <malloc.h> #include <string.h> #include <event2/listener.h> #include <sys/types.h> #include <errno.h> enum bufferevent_filter_result input_cb(struct evbuffer *src, struct evbuffer *dst, ev_ssize_t dst_limit, enum bufferevent_flush_mode mode, void *ctx) { //处理输入的数据:从源缓存区读,并加1后放入目的缓存区 char buf[1024]; memset(buf, '\0', sizeof(buf)); evbuffer_remove(src, buf, sizeof(buf)); int len = strlen(buf); printf("%d", len); for(int i = 0; i < len; ++i) { ++buf[i]; } buf[2*len] = '\n'; evbuffer_add(dst, buf, len); return BEV_OK; } enum bufferevent_filter_result output_cb(struct evbuffer *src, struct evbuffer *dst, ev_ssize_t dst_limit, enum bufferevent_flush_mode mode, void *ctx) { //处理输出的数据:从源缓存区读,复制后放入目的缓存区 char buf[1024] = {0}; memset(buf, '\0', sizeof(buf)); evbuffer_remove(src, buf, sizeof(buf)); int len = strlen(buf); for(int i = len; i < 2*len; ++i) { buf[i] = buf[i - len]; } evbuffer_add(dst, buf, 2*len); return BEV_OK; } void read_cb(struct bufferevent *bev, void *arg) { char buf[1024] = {0}; bufferevent_read(bev, buf, 1024); printf("%s\n", buf); } void listener_cb(struct evconnlistener *listener, evutil_socket_t fd, struct sockaddr *addr, int len, void *ptr) { struct sockaddr_in *caddr = (struct sockaddr_in *)addr; struct event_base *base = (struct event_base *)ptr; //init bufferevent struct bufferevent *bev; bev = bufferevent_socket_new(base, fd, BEV_OPT_CLOSE_ON_FREE); bufferevent_setcb(bev, NULL, NULL, NULL, NULL); bufferevent_enable(bev, EV_WRITE | EV_READ); struct bufferevent *filter_bev = bufferevent_filter_new(bev, input_cb, output_cb, BEV_OPT_CLOSE_ON_FREE, NULL, NULL); bufferevent_setcb(filter_bev, read_cb, NULL, NULL, NULL); bufferevent_enable(filter_bev, EV_READ|EV_WRITE); bufferevent_write(filter_bev, "abc", sizeof("abc")); } int main(int argc, const char *argv[]) { //init server struct sockaddr_in servaddr; memset(&servaddr, 0, sizeof(servaddr)); servaddr.sin_family = AF_INET; servaddr.sin_port = htons(9995); servaddr.sin_addr.s_addr = htonl(INADDR_ANY); //init event_base struct event_base *base; base = event_base_new(); //init linstener struct evconnlistener *listener; listener = evconnlistener_new_bind(base, listener_cb, base, LEV_OPT_CLOSE_ON_FREE|LEV_OPT_REUSEABLE_PORT, 36, (struct socketaddr *)&servaddr, sizeof(servaddr)); event_base_dispatch(base); evconnlistener_free(listener); event_base_free(base); }
客户端与上一节相同。流程见注释。