简单地说,CPU 亲和性(affinity) 就是进程要在某个给定的 CPU 上尽量长时间地运行而不被迁移到其他处理器的倾向性。Linux 内核进程调度器天生就具有被称为 软 CPU 亲和性(affinity) 的特性,这意味着进程通常不会在处理器之间频繁迁移。这种状态正是我们希望的,因为进程迁移的频率小就意味着产生的负载小。
2.6 版本的 Linux 内核还包含了一种机制,它让开发人员可以编程实现 硬 CPU 亲和性(affinity)。这意味着应用程序可以显式地指定进程在哪个(或哪些)处理器上运行。
什么是CPU Affinity?Affinity是进程的一个属性,这个属性指明了进程调度器能够把这个进程调度到哪些CPU上。
在Linux中,我们可以利用CPU affinity 把一个或多个进程绑定到一个或多个CPU上。CPU Affinity分为2种,soft affinity和hard affinity。soft affinity仅是一个建议,如果不可避免,调度器还是会把进程调度到其它的CPU上。hard affinity是调度器必须遵守的规则。
为什么需要CPU绑定?
●增加CPU缓存的命中率
CPU之间是不共享缓存的,如果进程频繁的在各个CPU间进行切换,需要不断的使旧CPU的cache失效。如果进程只在某个CPU上执行,则不会出现失效的情况。
●增加CPU缓存的命中率
在多个线程操作的是相同的数据的情况下,如果把这些线程调度到一个处理器上,大大的增加了CPU缓存的命中率。但是可能会导致并发性能的降低。如果这些线程是串行的,则没有这个影响。
●适合time-sensitive应用
在real-time或time-sensitive应用中,我们可以把系统进程绑定到某些CPU上,把应用进程绑定到剩余的CPU上。典型的设置是,把应用绑定到某个CPU上,把其它所有的进程绑定到其它的CPU上。
依据《linux内核设计与实现》的42节,人为控制一下cpu的绑定还是有用处地
linux的SMP负载均衡是基于进程数的,每个cpu都有一个可执行进程队列(为什么不是线程队列呢??),只有当其中一个cpu的可执行队列里进程数比其他cpu队列进程数多25%时,才会将进程移动到另外空闲cpu上,也就是说cpu0上的进程数应该是比其他cpu上多,但是会在25%以内。
4 进程独占CPU
如何实现一个或多个进程独占一个或多个CPU?即调度器只能把指定的进程调度至指定的CPU。最简单的方法是利用fork()的继承特性,子进程继承父进程的affinity。这种方法无需修改和编译内核代码。
init进程是所有进程的祖先,我们可以设置init进程的affinity来达到设置所有进程的affinity的目地,然后把我们自己的进程绑定到目地CPU上。这样就到达了在指定CPU上只运行指定的的进程的目地。
那么,如何修改init进程的affinity?我们只需在/etc/rc.d/rc.sysinit或/etc/rc.sysinit中,起始处增加如下两行,其中bind是6.1小节编译生成的可执行文件,rc.sysinit文件是init进程运行的第一个脚本。
/bin/bind 1 1 #绑定init进程至处理器0
/bin/bind $$ 1 #绑定当前进程至处理器0
在 Linux 内核中,所有的进程都有一个相关的数据结构,称为 task_struct
。这个结构非常重要,原因有很多;其中与 亲和性(affinity)相关度最高的是 cpus_allowed
位掩码。这个位掩码由 n 位组成,与系统中的 n 个逻辑处理器一一对应。 具有 4 个物理 CPU 的系统可以有 4 位。如果这些 CPU 都启用了超线程,那么这个系统就有一个 8 位的位掩码。
如果为给定的进程设置了给定的位,那么这个进程就可以在相关的 CPU 上运行。因此,如果一个进程可以在任何 CPU 上运行,并且能够根据需要在处理器之间进行迁移,那么位掩码就全是 1。实际上,这就是 Linux 中进程的缺省状态。
Linux 内核 API 提供了一些方法,让用户可以修改位掩码或查看当前的位掩码:
sched_set_affinity()
(用来修改位掩码)sched_get_affinity()
(用来查看当前的位掩码)
·sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask)
该函数设置进程为pid的这个进程,让它运行在mask所设定的CPU上.如果pid的值为0,则表示指定的是当前进程,使当前进程运行在mask所设定的那些CPU上.第二个参数cpusetsize是mask所指定的数的长度.通常设定为sizeof(cpu_set_t).如果当前pid所指定的进程此时没有运行在mask所指定的任意一个CPU上,则该指定的进程会从其它CPU上迁移到mask的指定的一个CPU上运行.
·sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask)
该函数获得pid所指示的进程的CPU位掩码,并将该掩码返回到mask所指向的结构中.即获得指定pid当前可以运行在哪些CPU上.同样,如果pid的值为0.也表示的是当前进程
注意,cpu_affinity
会被传递给子线程,因此应该适当地调用 sched_set_affinity
。
从函数名以及参数名都很明了,唯一需要点解释下的可能就是cpu_set_t这个结构体了。这个结构体的理解类似于select中的fd_set,可以理解为cpu集,也是通过约定好的宏来进行清除、设置以及判断:
通常 Linux 内核都可以很好地对进程进行调度,在应该运行的地方运行进程(这就是说,在可用的处理器上运行并获得很好的整体性能)。内核包含了一些用来检测 CPU 之间任务负载迁移的算法,可以启用进程迁移来降低繁忙的处理器的压力。
一般情况下,在应用程序中只需使用缺省的调度器行为。然而,您可能会希望修改这些缺省行为以实现性能的优化。让我们来看一下使用硬亲和性(affinity) 的 3 个原因。
基于大量计算的情形通常出现在科学和理论计算中,但是通用领域的计算也可能出现这种情况。一个常见的标志是您发现自己的应用程序要在多处理器的机器上花费大量的计算时间。
测试复杂软件是我们对内核的亲和性(affinity)技术感兴趣的另外一个原因。考虑一个需要进行线性可伸缩性测试的应用程序。有些产品声明可以在 使用更多硬件 时执行得更好。
我们不用购买多台机器(为每种处理器配置都购买一台机器),而是可以:
- 购买一台多处理器的机器
- 不断增加分配的处理器
- 测量每秒的事务数
- 评估结果的可伸缩性
如果应用程序随着 CPU 的增加可以线性地伸缩,那么每秒事务数和 CPU 个数之间应该会是线性的关系(例如斜线图 —— 请参阅下一节的内容)。这样建模可以确定应用程序是否可以有效地使用底层硬件。
Amdahl 法则说明这种加速比在现实中可能并不会发生,但是可以非常接近于该值。对于通常情况来说,我们可以推论出每个程序都有一些串行的组件。随着问题集不断变大,串行组件最终会在优化解决方案时间方面达到一个上限。
Amdahl 法则在希望保持高 CPU 缓存命中率时尤其重要。如果一个给定的进程迁移到其他地方去了,那么它就失去了利用 CPU 缓存的优势。实际上,如果正在使用的 CPU 需要为自己缓存一些特殊的数据,那么所有其他 CPU 都会使这些数据在自己的缓存中失效。
因此,如果有多个线程都需要相同的数据,那么将这些线程绑定到一个特定的 CPU 上是非常有意义的,这样就确保它们可以访问相同的缓存数据(或者至少可以提高缓存的命中率)。否则,这些线程可能会在不同的 CPU 上执行,这样会频繁地使其他缓存项失效。
我们对 CPU 亲和性(affinity)感兴趣的最后一个原因是实时(对时间敏感的)进程。例如,您可能会希望使用硬亲和性(affinity)来指定一个 8 路主机上的某个处理器,而同时允许其他 7 个处理器处理所有普通的系统调度。这种做法确保长时间运行、对时间敏感的应用程序可以得到运行,同时可以允许其他应用程序独占其余的计算资源。
来源:CSDN
作者:沈万三gz
链接:https://blog.csdn.net/shenwansan_gz/article/details/50297637