性能测试
Redis自带了一个叫 redis-benchmark的工具来模拟N个客户端同时发出M个请求,(类似于Apache ab程序),你可以使用redis-benchmark -h来查看基准参数。
Usage: redis-benchmark [-h ] [-p ] [-c ] [-n [-k ] -h #指定服务器名称(default 127.0.0.1); -p #指定服务器端口(default 6379); -s #指定服务器Socket(overrides host and port); -a #指定Redis密码; -c #指定并行客户端数量 (default 50); -n #指定总的请求数量(default 100000); -d #指定SET/GET一次数据大小 (default 2 Bytes); -dbnum #选择指定的数据库(default 0); -k #保持一个连接,一台服务器来处理这些请求 (default 1); -r #设置随机Key; -P #Pipeline requests. Default 1 (no pipeline). -q #显示每秒钟能处理多少请求数结果; --csv #输出为CSV格式; -l #Loop. Run the tests forever. -I #Idle mode. Just open N idle connections and wait.
这里用redis自带的benchmark工具测试,由于twemproxy不支持ping命令,所以对于twemproxy只测试set, get, incr, lpush, lpop, sadd, spop, lpush, lrange_100, lrange_300, lrange_500, lrange_600,mset命令。
Redis单实例简单测试
1)客户端分别为1/1000/5000,总请求数为100000,Key大小为1k,针对set/get命令测试QPS和完成时间(服务器:CPU 64核,内存 64G)
# redis-benchmark -h 0.0.0.0 -p 6500 -c 1 -t set,get -d 1000 ====== SET ====== 100000 requests completed in 2.65 seconds #完成时间 1 parallel clients 1000 bytes payload keep alive: 1 100.00% < = 0 milliseconds 37764.35 requests per second #每秒请求数 ====== GET ====== 100000 requests completed in 1.70 seconds 1 parallel clients 1000 bytes payload keep alive: 1 100.00% <= 0 milliseconds 58962.27 requests per second
# redis-benchmark -h 0.0.0.0 -p 6500 -c 1000 -t set,get -d 1000 ====== SET ====== 100000 requests completed in 0.75 seconds 1000 parallel clients 1000 bytes payload keep alive: 1 0.00% < = 4 milliseconds .................... 100.00% <= 14 milliseconds 132450.33 requests per second ====== GET ====== 100000 requests completed in 0.78 seconds 1000 parallel clients 1000 bytes payload keep alive: 1 0.00% <= 3 milliseconds .................. 100.00% <= 8 milliseconds 128205.13 requests per second
# redis-benchmark -h 0.0.0.0 -p 6500 -c 5000 -t set,get -d 1000 ====== SET ====== 100000 requests completed in 1.18 seconds 5000 parallel clients 1000 bytes payload keep alive: 1 0.00% < = 28 milliseconds .......................... 100.00% <= 105 milliseconds 84817.64 requests per second ====== GET ====== 100000 requests completed in 1.24 seconds 5000 parallel clients 1000 bytes payload keep alive: 1 0.00% <= 35 milliseconds ....................... 100.00% <= 55 milliseconds 80580.17 requests per second
下面提供一个CPU 8核,内存8G的压测结果。
root@shd-ops-mng1:~ # redis-benchmark -h 0.0.0.0 -p 6380 -c 1 -t set,get -d 1000 ====== SET ====== 100000 requests completed in 6.50 seconds 1 parallel clients 1000 bytes payload keep alive: 1 98.95% < = 1 milliseconds ................... 100.00% <= 6 milliseconds 15379.88 requests per second ====== GET ====== 100000 requests completed in 6.68 seconds 1 parallel clients 1000 bytes payload keep alive: 1 98.91% <= 1 milliseconds .................. 100.00% <= 4 milliseconds 14965.58 requests per second
# redis-benchmark -h 0.0.0.0 -p 6380 -c 1000 -t set,get -d 1000 ====== SET ====== 100000 requests completed in 0.96 seconds 1000 parallel clients 1000 bytes payload keep alive: 1 0.00% < = 4 milliseconds .................... 103734.44 requests per second ====== GET ====== 100000 requests completed in 1.00 seconds 1000 parallel clients 1000 bytes payload keep alive: 1 0.00% <= 3 milliseconds ................... 100.00% <= 15 milliseconds 100300.91 requests per second
默认情况下面,基准测试使用单一的key。在一个基于内存的数据库里, 单一key测试和真实情况下面不会有巨大变化。当然,使用一个大的key范围空间, 可以模拟现实情况下面的缓存不命中情况。
这时候我们可以使用-r命令。比如,假设我们想设置10万随机key连续SET 100万次,连接客户端分别为1/5/1000,我们可以使用下列的命令:
# redis-benchmark -h 0.0.0.0 -p 6500 -c 1 -r 100000 -q 1000000 -t set -d 1000 -q 1000000 -t set -d 1000 -q: 63051.70 requests per second # redis-benchmark -h 0.0.0.0 -p 6500 -c 1000 -r 100000 -q 1000000 -t set -d 1000 -q 1000000 -t set -d 1000 -q: 94966.77 requests per second # redis-benchmark -h 0.0.0.0 -p 6500 -c 5000 -r 100000 -q 1000000 -t set -d 1000 -q 1000000 -t set -d 1000 -q: 83542.19 requests per second
测试twemproxy
# redis-benchmark -h 0.0.0.0 -p 36379 -c 1 -t set,get -d 1000 ====== SET ====== 10000 requests completed in 1.08 seconds 1 parallel clients 1000 bytes payload keep alive: 1 100.00% < = 0 milliseconds 9267.84 requests per second ====== GET ====== 10000 requests completed in 1.08 seconds 1 parallel clients 1000 bytes payload keep alive: 1 100.00% <= 0 milliseconds 9293.68 requests per second
# redis-benchmark -h 0.0.0.0 -p 36379 -c 1000 -t set,get -d 1000 ====== SET ====== 10000 requests completed in 0.18 seconds 1000 parallel clients 1000 bytes payload keep alive: 1 0.01% < = 3 milliseconds ................ 100.00% <= 20 milliseconds 55555.55 requests per second ====== GET ====== 10000 requests completed in 0.21 seconds 1000 parallel clients 1000 bytes payload keep alive: 1 0.01% <= 5 milliseconds .............. 100.00% <= 23 milliseconds 47393.37 requests per second
# redis-benchmark -h 0.0.0.0 -p 36379 -c 5000 -t set,get -d 1000 ====== SET ====== 10000 requests completed in 0.28 seconds 5000 parallel clients 1000 bytes payload keep alive: 1 0.01% < = 28 milliseconds ....................... 100.00% <= 87 milliseconds 35587.19 requests per second ====== GET ====== 10000 requests completed in 0.29 seconds 5000 parallel clients 1000 bytes payload keep alive: 1 0.01% <= 33 milliseconds .................... 100.00% <= 85 milliseconds 34364.26 requests per second
来源:oschina
链接:https://my.oschina.net/u/3586129/blog/3012126