Comparing pandas Series for equality when they contain nan?

淺唱寂寞╮ 提交于 2019-12-07 00:50:06

问题


My application needs to compare Series instances that sometimes contain nans. That causes ordinary comparison using == to fail, since nan != nan:

import numpy as np
from pandas import Series
s1 = Series([1,np.nan])
s2 = Series([1,np.nan])

>>> (Series([1, nan]) == Series([1, nan])).all()
False

What's the proper way to compare such Series?


回答1:


How about this. First check the NaNs are in the same place (using isnull):

In [11]: s1.isnull()
Out[11]: 
0    False
1     True
dtype: bool

In [12]: s1.isnull() == s2.isnull()
Out[12]: 
0    True
1    True
dtype: bool

Then check the values which aren't NaN are equal (using notnull):

In [13]: s1[s1.notnull()]
Out[13]: 
0    1
dtype: float64

In [14]: s1[s1.notnull()] == s2[s2.notnull()]
Out[14]: 
0    True
dtype: bool

In order to be equal we need both to be True:

In [15]: (s1.isnull() == s2.isnull()).all() and (s1[s1.notnull()] == s2[s2.notnull()]).all()
Out[15]: True

You could also check name etc. if this wasn't sufficient.

If you want to raise if they are different, use assert_series_equal from pandas.util.testing:

In [21]: from pandas.util.testing import assert_series_equal

In [22]: assert_series_equal(s1, s2)



回答2:


Currently one should just use series1.equals(series2) see docs. This also checks if nans are in the same positions.




回答3:


In [16]: s1 = Series([1,np.nan])

In [17]: s2 = Series([1,np.nan])

In [18]: (s1.dropna()==s2.dropna()).all()
Out[18]: True


来源:https://stackoverflow.com/questions/18453442/comparing-pandas-series-for-equality-when-they-contain-nan

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!