求解 Ax=b

偶尔善良 提交于 2019-12-06 14:41:11

    一 线性方程组 Ax=b 的解释

    线性方程组 Ax=b,其中矩阵 A 尺寸为 m*n, 当 A 为方正时,可使用消元法判断解是否存在并求解。当 A 为长方形矩阵时,同样可使用消元法判断解存在情况并求解。

    线性方程组 Ax=b 可以使用不同观点看待:

    1)可看作函数 f(x)=b,即输入任意 n 维向量 x,经过矩阵 A 变换处理,输出 m 维向量 b,即向量 b 由向量 x 通过矩阵 A 线性变换得到;

    2)令 ,Ax=b 可表示为 ,进一步改写得 

         当 b 是矩阵 A 列向量  的线性组合时,或者 b 在矩阵 A 列空间时,Ax=b 可解,否则 Ax=b 不可解;

    3)当矩阵 A 存在左逆 B 时,BA=I,则有 BAx=Bb,x=Bb;当矩阵A存在右逆 C 时,AC=I, 则有 Ax=ACb,x=Cb;求解线性方程组转换为求矩阵 A 是否存在左逆或者右逆,以及其逆是否唯一;

    4)当向量  满足   时,则向量  位于矩阵 A 的零空间,令  为 Ax=b 的一个特解,则有  成立,也即 Ax=b 的解为 

 

    二 矩阵 A 的四个子空间

    考虑矩阵 A 为 m*n,该矩阵由 n 个 m 维列向量构成,

    1)对 n 个列向量进行任意线性组合 , 其中  为任意实数序列,则向量 a 构成的集合为矩阵 A 的列空间,表示为 C(A);

    2)对 m 个行向量进行线性组合 ,其中  为任意实数序列,则向量 b 构成的集合为矩阵 A 的行空间,表示为

    3)求解 Ax=0,解 x 构成的集合为矩阵 A 的零空间,表示为 N(A);矩阵 A 的行空间与矩阵 A 的零空间为  下相互正交的子空间;观察方程组 Ax=0 表示为矩阵 A 每一行与向量 x 点积为零,则任意行空间中向量与任意零空间中向量点积为零,表明两个子空间正交;

    4)求解 ,解 y 构成的集合为矩阵 A 的左零空间,表示为 ;矩阵 A 的列空间与矩阵 A 的左零空间为  下相互正交的子空间;观察方程组  表示为向量 y 与矩阵 A 的每一列点积为零,则任意左零空间的向量与任意列空间中的向量点积为零,表明两个子空间正交;

    以上给出矩阵 A 的四个子空间,通过高斯消元法将矩阵 A 化为 U(反向消元可进一步化为 R),可以得到矩阵 A 的四个子空间的维度,以及各个子空间的基。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!