How to set specific gpu in tensorflow?

谁说胖子不能爱 提交于 2019-11-26 22:41:37

问题


I want to specify the gpu to run my process. And I set it as follows:

import tensorflow as tf
with tf.device('/gpu:0'):
    a = tf.constant(3.0)
with tf.Session() as sess:
    while True:
        print sess.run(a)

However it still allocate memory in both my two gpus.

|    0      7479    C   python                         5437MiB 
|    1      7479    C   python                         5437MiB 

回答1:


I believe that you need to set CUDA_VISIBLE_DEVICES=1. Or which ever GPU you want to use. If you make only one GPU visible, you will refer to it as /gpu:0 in tensorflow regardless of what you set the environment variable to.

More info on that environment variable: https://devblogs.nvidia.com/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/




回答2:


There are 3 ways to achieve this:

  1. Using CUDA_VISIBLE_DEVICES environment variable. by setting environment variable CUDA_VISIBLE_DEVICES="1" makes only device 1 visible and by setting CUDA_VISIBLE_DEVICES="0,1" makes devices 0 and 1 visible. You can do this in python by having a line os.environ["CUDA_VISIBLE_DEVICES"]="0,1" after importing os package.

  2. Using with tf.device('/gpu:2') and creating the graph. Then it will use GPU device 2 to run.

  3. Using config = tf.ConfigProto(device_count = {'GPU': 1}) and then sess = tf.Session(config=config). This will use GPU device 1.




回答3:


TF would allocate all available memory on each visible GPU if not told otherwise. Here are 5 ways to stick to just one (or a few) GPUs.

Bash solution. Set CUDA_VISIBLE_DEVICES=0,1 in your terminal/console before starting python or jupyter notebook:

$CUDA_VISIBLE_DEVICES=0,1 python script.py

Python solution. run next 2 lines of code before constructing a session

import os
os.environ["CUDA_VISIBLE_DEVICES"]="0,1"

Automated solution. Method below will automatically detect GPU devices that are not used by other scripts and set CUDA_VISIBLE_DEVICES for you. You have to call mask_unused_gpus before constructing a session. It will filter out GPUs by current memory usage. This way you can run multiple instances of your script at once without changing your code or setting console parameters.

The function:

import subprocess as sp
import os

def mask_unused_gpus(leave_unmasked=1):
  ACCEPTABLE_AVAILABLE_MEMORY = 1024
  COMMAND = "nvidia-smi --query-gpu=memory.free --format=csv"

  try:
    _output_to_list = lambda x: x.decode('ascii').split('\n')[:-1]
    memory_free_info = _output_to_list(sp.check_output(COMMAND.split()))[1:]
    memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
    available_gpus = [i for i, x in enumerate(memory_free_values) if x > ACCEPTABLE_AVAILABLE_MEMORY]

    if len(available_gpus) < leave_unmasked: raise ValueError('Found only %d usable GPUs in the system' % len(available_gpus))
    os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, available_gpus[:leave_unmasked]))
  except Exception as e:
    print('"nvidia-smi" is probably not installed. GPUs are not masked', e)

mask_unused_gpus(2)

Limitations: if you start multiple scripts at once it might cause a collision, because memory is not allocated immediately when you construct a session. In case it is a problem for you, you can use a randomized version as in original source code: mask_busy_gpus()

Tensorflow 2.0 suggest yet another method:

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
  # Restrict TensorFlow to only use the first GPU
  try:
    tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
  except RuntimeError as e:
    # Visible devices must be set at program startup
    print(e)

Tensorflow/Keras also allows to specify gpu to be used with session config. I can recommend it only if setting environment variable is not an options (i.e. an MPI run). Because it tend to be the least reliable of all methods, especially with keras.

config = tf.ConfigProto()
config.gpu_options.visible_device_list = "0,1"
with tf.Session(config) as sess:
#or K.set_session(tf.Session(config))



回答4:


You can modify the GPU options settings by adding at the begining of your python script:

gpu_options = tf.GPUOptions(visible_device_list="0")
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

"0" is here the name of the GPU you want to use. You can have the list of the GPU available by typing the command nvidia-smi in the terminal prompt.


With Keras, these 2 functions allow the selection of CPU or GPU and in the case of GPU the fraction of memory that will be used.

import os
from keras.backend.tensorflow_backend import set_session
import tensorflow as tf



def set_cpu_option():
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152
    os.environ["CUDA_VISIBLE_DEVICES"] = ""
    os.environ["CUDA_VISIBLE_DEVICES"] = ""


def set_gpu_option(which_gpu, fraction_memory):
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = fraction_memory
    config.gpu_options.visible_device_list = which_gpu
    set_session(tf.Session(config=config))
    return

set_gpu_option("0", 0.9)
# or 
set_cpu_option()


来源:https://stackoverflow.com/questions/40069883/how-to-set-specific-gpu-in-tensorflow

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!