数据分析:Numpy

拟墨画扇 提交于 2019-12-06 08:40:40

Numpy

一.Numpy简介

 

 

 二.Numpy使用

前提:安装和导入

 

 

 jupyter notebook实例:

 

 

1.ndarray -多维数组对象

 

 

 

简介:通过ndarray这个多维数组对象可以让这些批量计算变得更加简单,当然这只它其中一种优势。

ndayyary多种创建方式

#1.np.array:将列表转换为数组,可选择显式指定dtype

#第一种:np.array(列表)
np.array([1,2,3,4,5])  

 

 

 #2.np.arange(数字) ### 类似于python的range版本

#第二种创建方式:np.arange(数字)  ### 类似于python的range版本

 

 

 

 

 #3.linspace:类似arange(),np.linspace(初始值,结束值, num=分割份数默认是50,endpoint=False是否包含结束值) 

示例1:

 

 

 

示例2:

 

 

 #4.zero创建0数组:np.zeros((维度数默认为1,每个列表元素数))

示例1:

 示例2:

 

 

#4.zero创建1数组:np.zeros((维度数默认为1,每个列表元素数))

示例1:

 

 示例2:

 

 #5.empty:根据指定形状和dtype创建空数组(随机值):np.empty(维度数默认为1,每个列表元素数)

示例1:

 

 示例2:

 

 #6.eye:根据指定边长和dtype创建单位矩阵:np.eye(维度数和每个列表元素数)

示例1:

 

 示例2:

2.ndarry之间的运算

#1.两个列表对应相乘和列表内元素求和:

 

 

 #2.加减乘除都是一样的两个ndarray列表对应位元素进行计算

 

 

 

加:

 

 

 

减:

 

 

乘:

以上为例:

补充:

 

 

 

 

除:注意是整除还是取整或是取余,这里就不做演示了

3.二维数组

注意:列表里有几个列表就是几维数组

 

 

4.常用属性

 

 

 示例数组:

 

 

 

#1.T:高维数组的转置(列与行的转换,注意列表里有几个列表就是几行每个列表里有几个元素就是几列)

如:2行4列数组转变为4行2列

 

 

 #2dtype:数组元素的数据类型

 

 

 #3.size:数组元素个数

 

 

 #4.ndim:数组维度

 

 

 #5.shape:以元组的形式展示数组的维度(维度,每个列表里元素个数)

 

 

5.数据类型

 

 

#1.转换为浮点型

 

 

 #2.其他类型同理

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!