NLTK - Get and Simplify List of Tags

和自甴很熟 提交于 2019-12-06 04:52:57

问题


I'm using the Brown Corpus. I want some way to print out all the possible tags and their names (not just tag abbreviations). There are also quite a few tags, is there a way to 'simplify' the tags? By simplify I mean combine two extremely similar tags into one and re-tag the merged words with the other tag?


回答1:


It's somehow discussed previously in:

  • Java Stanford NLP: Part of Speech labels?

  • Simplifying the French POS Tag Set with NLTK

  • https://linguistics.stackexchange.com/questions/2249/turn-penn-treebank-into-simpler-pos-tags

The POS tag output from nltk.pos_tag are PennTreeBank tagset, https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html, see What are all possible pos tags of NLTK?

There are several approach but the simplest one might be to use only the first 2 characters of the POS as the main set of POS tags. This is because the first two characters in the POS tag represents the broad classes of POS in Penn Tree Bank tagset.

For instance NNS means plural noun, and NNP means proper noun and the NN tag subsumes all of it by representing the generic noun.

Here's a code example:

>>> from nltk.corpus import brown
>>> from collections import Counter

>>> x = defaultdict(list)
>>> for word,pos in brown.tagged_words()[1:100]:
...     x[pos].append(word)
... 
>>> x
defaultdict(<type 'list'>, {u'DTI': [u'any'], u'BEN': [u'been'], u'VBD': [u'said', u'produced', u'took', u'said'], u'NP$': [u"Atlanta's"], u'NN-TL': [u'County', u'Jury', u'City', u'Committee', u'City', u'Court', u'Judge', u'Mayor-nominate'], u'VBN': [u'conducted', u'charged', u'won'], u"''": [u"''", u"''", u"''"], u'WDT': [u'which', u'which', u'which'], u'JJ': [u'recent', u'over-all', u'possible', u'hard-fought'], u'VBZ': [u'deserves'], u'NN': [u'investigation', u'primary', u'election', u'evidence', u'place', u'jury', u'term-end', u'charge', u'election', u'praise', u'manner', u'election', u'term', u'jury', u'primary'], u',': [u',', u','], u'.': [u'.', u'.'], u'TO': [u'to'], u'NP': [u'September-October', u'Durwood', u'Pye', u'Ivan'], u'BEDZ': [u'was', u'was'], u'NR': [u'Friday'], u'NNS': [u'irregularities', u'presentments', u'thanks', u'reports', u'irregularities'], u'``': [u'``', u'``', u'``'], u'CC': [u'and'], u'RBR': [u'further'], u'AT': [u'an', u'no', u'The', u'the', u'the', u'the', u'the', u'the', u'the', u'The', u'the'], u'IN': [u'of', u'in', u'of', u'of', u'for', u'in', u'by', u'of', u'in', u'by'], u'CS': [u'that', u'that'], u'NP-TL': [u'Fulton', u'Atlanta', u'Fulton'], u'HVD': [u'had', u'had'], u'IN-TL': [u'of'], u'VB': [u'investigate'], u'JJ-TL': [u'Grand', u'Executive', u'Superior']})
>>> len(x)
29

The shorten version looks like this:

>>> x = defaultdict(list)
>>> for word,pos in brown.tagged_words()[1:100]:
...     x[pos[:2]].append(word)
... 
>>> x
defaultdict(<type 'list'>, {u'BE': [u'was', u'been', u'was'], u'VB': [u'said', u'produced', u'took', u'said', u'deserves', u'conducted', u'charged', u'investigate', u'won'], u'WD': [u'which', u'which', u'which'], u'RB': [u'further'], u'NN': [u'County', u'Jury', u'investigation', u'primary', u'election', u'evidence', u'irregularities', u'place', u'jury', u'term-end', u'presentments', u'City', u'Committee', u'charge', u'election', u'praise', u'thanks', u'City', u'manner', u'election', u'term', u'jury', u'Court', u'Judge', u'reports', u'irregularities', u'primary', u'Mayor-nominate'], u'TO': [u'to'], u'CC': [u'and'], u'HV': [u'had', u'had'], u'``': [u'``', u'``', u'``'], u',': [u',', u','], u'.': [u'.', u'.'], u"''": [u"''", u"''", u"''"], u'CS': [u'that', u'that'], u'AT': [u'an', u'no', u'The', u'the', u'the', u'the', u'the', u'the', u'the', u'The', u'the'], u'JJ': [u'Grand', u'recent', u'Executive', u'over-all', u'Superior', u'possible', u'hard-fought'], u'IN': [u'of', u'in', u'of', u'of', u'of', u'for', u'in', u'by', u'of', u'in', u'by'], u'NP': [u'Fulton', u"Atlanta's", u'Atlanta', u'September-October', u'Fulton', u'Durwood', u'Pye', u'Ivan'], u'NR': [u'Friday'], u'DT': [u'any']})
>>> len(x)
19

Another solution is to use the universal postags, see http://www.nltk.org/book/ch05.html

>>> x = defaultdict(list)
>>> for word,pos in brown.tagged_words(tagset='universal')[1:100]:
...     x[pos].append(word)
... 
>>> x
defaultdict(<type 'list'>, {u'ADV': [u'further'], u'NOUN': [u'Fulton', u'County', u'Jury', u'Friday', u'investigation', u"Atlanta's", u'primary', u'election', u'evidence', u'irregularities', u'place', u'jury', u'term-end', u'presentments', u'City', u'Committee', u'charge', u'election', u'praise', u'thanks', u'City', u'Atlanta', u'manner', u'election', u'September-October', u'term', u'jury', u'Fulton', u'Court', u'Judge', u'Durwood', u'Pye', u'reports', u'irregularities', u'primary', u'Mayor-nominate', u'Ivan'], u'ADP': [u'of', u'that', u'in', u'that', u'of', u'of', u'of', u'for', u'in', u'by', u'of', u'in', u'by'], u'DET': [u'an', u'no', u'any', u'The', u'the', u'which', u'the', u'the', u'the', u'the', u'which', u'the', u'The', u'the', u'which'], u'.': [u'``', u"''", u'.', u',', u',', u'``', u"''", u'.', u'``', u"''"], u'PRT': [u'to'], u'VERB': [u'said', u'produced', u'took', u'said', u'had', u'deserves', u'was', u'conducted', u'had', u'been', u'charged', u'investigate', u'was', u'won'], u'CONJ': [u'and'], u'ADJ': [u'Grand', u'recent', u'Executive', u'over-all', u'Superior', u'possible', u'hard-fought']})
>>> len(x)
9



回答2:


Many of the tagsets in the NLTK's corpora come with predefined mappings to a simplified, "universal" tagset. In addition to being more convenient for many purposes, the simplified tagset allows a degree of compatibility between different corpora that allow remapping to the universal tagset.

For the brown corpus, you can simply fetch tagged words or sents like this:

brown.tagged_words(tagset="universal")

For example:

>>> print(brown.tagged_words()[:10])
[('The', 'DET'), ('Fulton', 'NOUN'), ('County', 'NOUN'), ('Grand', 'ADJ'), ('Jury', 'NOUN'),
('said', 'VERB'), ('Friday', 'NOUN'), ('an', 'DET'), ('investigation', 'NOUN'), 
('of', 'ADP')]

To see the definitions of the original, complex tags in the Brown corpus, use nltk.help.upenn_tagset() (as mentioned also in this answer, linked by Alvas). You can get the whole list by calling it without arguments, or pass an argument (a regexp) to get only the matching tag(s). The results include a brief definition and examples.

>>> nltk.help.brown_tagset("DT.*")
DT: determiner/pronoun, singular
    this each another that 'nother
DT$: determiner/pronoun, singular, genitive
    another's
DT+BEZ: determiner/pronoun + verb 'to be', present tense, 3rd person singular
    that's
DT+MD: determiner/pronoun + modal auxillary
    that'll this'll
...


来源:https://stackoverflow.com/questions/30791194/nltk-get-and-simplify-list-of-tags

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!