airfoil profile geometry plotting

五迷三道 提交于 2019-12-06 03:47:12

Well it was quite a few years I do something with wings.

I do not have any skewed wings data as on your image the closest thing I found was this:

  1. leading edge not correct for nontrivial wings

    just find point where the sign of dx is flipping and compute

    dx(i)=x(i)-x(i-1)
    

    then mark zones where dx is positive or negative and find the middle between them (usually dx==0 for that zone). Mark the edge point as ix1

  2. camber line

    for precise geometry you will need intersections of normals casted from each side so:

    • start on outline point i
    • cast normal inside wing
    • search opposite side.
    • find point, It's normal intersect the opposite normal and divide both normals to the same distance

    This is doable but with insane complexity

  3. approximate camber line

    less precise way but much much faster so:

    1. start on outline point i
    2. find closest point to it on the opposite side
    3. compute midpoint between them and store it as inaccurate axis0 points. Do this for all points i=(0-ix1) (Red line)
    4. do the same but start from opposite side store as axis1 (dark red)
    5. when done then just find the average between axis0,axis1

    This can be done in the same way result is blue axis polyline

C++ source:

    List<double> pnt;   // outline 2D pnts = {x0,y0,x1,y1,x2,y2,...}
    List<double> axis;  // axis line 2D pnts = {x0,y0,x1,y1,x2,y2,...}
    int ix0,ix1;        // edge points

void compute()
    {
    int i,i0,i1;
    double d,dd;
    double *p0,*p1,*p2;
    double x0,x1,y0,y1;
    List<double> axis0,axis1;

    // find leading edge point
    ix0=0; ix1=0;
    for (p0=pnt.dat,p1=p0+2,p2=p1+2,i=2;i<pnt.num;i+=2,p0=p1,p1=p2,p2+=2)
     if ((p1[0]-p0[0])*(p2[0]-p1[0])<=0.0) { ix1=i; break; }
    // find axis0: midpoint of i0=(0-ix1) i1=find closest from (ix1,pnt.num)
    for (i0=2,i1=pnt.num-2;i0<ix1-2;i0+=2)
        {
        x0=pnt[i0+0];
        y0=pnt[i0+1];
        for (d=-1.0,i=i1;i>ix1+2;i-=2)
            {
            x1=pnt[i+0];
            y1=pnt[i+1];
            dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
            if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
            }
        if (d>=0.0)
            {
            x1=pnt[i1+0];
            y1=pnt[i1+1];
            axis0.add(0.5*(x0+x1));
            axis0.add(0.5*(y0+y1));
            }
        }
    // find axis1: midpoint of i0=(ix1,pnt.num) i1=find closest from (0,ix1)
    for (i1=2,i0=pnt.num-2;i0>ix1+2;i0-=2)
        {
        x0=pnt[i0+0];
        y0=pnt[i0+1];
        for (d=-1.0,i=i1;i<ix1-2;i+=2)
            {
            x1=pnt[i+0];
            y1=pnt[i+1];
            dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
            if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
            }
        if (d>=0.0)
            {
            x1=pnt[i1+0];
            y1=pnt[i1+1];
            axis1.add(0.5*(x0+x1));
            axis1.add(0.5*(y0+y1));
            }
        }
    // find axis: midpoint of i0=<0-axis0.num) i1=find closest from <0-axis1.num)
    axis.add(pnt[ix0+0]);
    axis.add(pnt[ix0+1]);
    for (i0=0,i1=0;i0<axis0.num;i0+=2)
        {
        x0=axis0[i0+0];
        y0=axis0[i0+1];
        for (d=-1.0,i=i1;i<axis1.num;i+=2)
            {
            x1=axis1[i+0];
            y1=axis1[i+1];
            dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
            if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
            }
        if (d>=0.0)
            {
            x1=axis1[i1+0];
            y1=axis1[i1+1];
            axis.add(0.5*(x0+x1));
            axis.add(0.5*(y0+y1));
            }
        }
    axis.add(pnt[ix1+0]);
    axis.add(pnt[ix1+1]);
    }
  • List<double> xxx; is just mine dynamic list template the same as double xxx[];
  • xxx.add(5); adds 5 to end of the list
  • xxx[7] access array element
  • xxx.num is the actual used size of the array
  • xxx.reset() clears the array and set xxx.num=0

[edit1] correct leading edge point

Have an insane thought about this to find the edge point on the run plus some code tweaking and the outcome is good enough for me :) so first some explaining:

algorithm for axis stays the same but instead of ix1 bound use only points that was not yet used ... Also count only valid closest points (on the opposite side) if none found stop (top image case). From this point find the most far point from last axis point this is the leading edge point.

This approach has much much accurate output (axis0,axis1 are closer together)

Now the C++ code:

void compute()
    {
    int i,i0,i1,ii,n=4;
    double d,dd;
    double x0,x1,y0,y1;
    List<double> axis0,axis1;
    ix0=0; ix1=0;

    // find axis0: midpoint of i0=(0-ix1) i1=find closest from (ix1,pnt.num)
    for (i0=0,i1=pnt.num-2;i0+n<i1;i0+=2)
        {
        x0=pnt[i0+0];
        y0=pnt[i0+1];
        i=i1+n; if (i>pnt.num-2) i=pnt.num-2; ii=i1;
        for (d=-1.0;i>i0+n;i-=2)
            {
            x1=pnt[i+0];
            y1=pnt[i+1];
            dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
            if ((d<0.0)||((dd<=d)&&(dd>1e-10))) { i1=i; d=dd; }
            if ((d>=0.0)&&(dd>d)) break;
            }
        if (d>=0.0)
            {
            if (i1-i0<=n+2) { i1=ii; break; } // stop if non valid closest point found
            x1=pnt[i1+0];
            y1=pnt[i1+1];
            axis0.add(0.5*(x0+x1));
            axis0.add(0.5*(y0+y1));
            }
        }
    // find leading edge point (the farest point from last found axis point)
    x0=axis0[axis0.num-2];
    y0=axis0[axis0.num-1];
    for (d=0.0,i=i0;i<=i1;i+=2)
        {
        x1=pnt[i+0];
        y1=pnt[i+1];
        dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
        if (dd>d) { ix1=i; d=dd; }
        }
    axis0.add(pnt[ix1+0]);
    axis0.add(pnt[ix1+1]);

    // find axis1: midpoint of i0=(ix1,pnt.num) i1=find closest from (0,ix1)
    for (i1=0,i0=pnt.num-2;i0+n>i1;i0-=2)
        {
        x0=pnt[i0+0];
        y0=pnt[i0+1];
        i=i1-n; if (i<0) i=0; ii=i1;
        for (d=-1.0;i<i0-n;i+=2)
            {
            x1=pnt[i+0];
            y1=pnt[i+1];
            dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
            if ((d<0.0)||((dd<=d)&&(dd>1e-10))) { i1=i; d=dd; }
            if ((d>=0.0)&&(dd>d)) break;
            }
        if (d>=0.0)
            {
            if (i0-i1<=n+2) { i1=ii; break; } // stop if non valid closest point found
            x1=pnt[i1+0];
            y1=pnt[i1+1];
            axis1.add(0.5*(x0+x1));
            axis1.add(0.5*(y0+y1));
            }
        }
    // find leading edge point (the farest point from last found axis point)
    x0=axis1[axis1.num-2];
    y0=axis1[axis1.num-1];
    for (d=0.0,i=i1;i<=i0;i+=2)
        {
        x1=pnt[i+0];
        y1=pnt[i+1];
        dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
        if (dd>d) { ix1=i; d=dd; }
        }
    axis1.add(pnt[ix1+0]);
    axis1.add(pnt[ix1+1]);

    // find axis: midpoint of i0=<0-axis0.num) i1=find closest from <0-axis1.num)
    for (i0=0,i1=0;i0<axis0.num;i0+=2)
        {
        x0=axis0[i0+0];
        y0=axis0[i0+1];
        for (d=-1.0,i=i1;i<axis1.num;i+=2)
            {
            x1=axis1[i+0];
            y1=axis1[i+1];
            dd=((x1-x0)*(x1-x0))+((y1-y0)*(y1-y0));
            if ((d<0.0)||(dd<=d)) { i1=i; d=dd; }
            }
        if (d>=0.0)
            {
            x1=axis1[i1+0];
            y1=axis1[i1+1];
            axis.add(0.5*(x0+x1));
            axis.add(0.5*(y0+y1));
            }
        }
    }

constant n=4 is just for safety overlapped search for closest points it should be a fraction of pnt.num. Sometimes the closest point is before the last found closest point this depends on the curvature of booth sides. Too big n will cause slowdowns and if n>pnt.num/4 it could also invalidate output.

If too small then for smaller radius of curvature will lower the accuracy this approach is dependent on sufficient point coverage. If the wing is sampled with too low point count it can lead to inaccuracy. The source code is 3 times almost the same thing you can chose which ix1 to remember (from first or second search) they are neighboring points

test profile:

1.000000 0.000000
0.990000 0.006719
0.980000 0.013307
0.970000 0.019757
0.960000 0.026064
0.950000 0.032223
0.940000 0.038228
0.930000 0.044075
0.920000 0.049759
0.910000 0.055276
0.900000 0.060623
0.890000 0.065795
0.880000 0.070790
0.870000 0.075604
0.860000 0.080234
0.850000 0.084678
0.840000 0.088935
0.830000 0.093001
0.820000 0.096876
0.810000 0.100558
0.800000 0.104046
0.790000 0.107339
0.780000 0.110438
0.770000 0.113342
0.760000 0.116051
0.750000 0.118566
0.740000 0.120887
0.730000 0.123016
0.720000 0.124954
0.710000 0.126702
0.700000 0.128262
0.690000 0.129637
0.680000 0.130829
0.670000 0.131839
0.660000 0.132672
0.650000 0.133331
0.640000 0.133818
0.630000 0.134137
0.620000 0.134292
0.610000 0.134287
0.600000 0.134127
0.590000 0.133815
0.580000 0.133356
0.570000 0.132755
0.560000 0.132016
0.550000 0.131146
0.540000 0.130148
0.530000 0.129030
0.520000 0.127795
0.510000 0.126450
0.500000 0.125000
0.490000 0.123452
0.480000 0.121811
0.470000 0.120083
0.460000 0.118275
0.450000 0.116392
0.440000 0.114441
0.430000 0.112429
0.420000 0.110361
0.410000 0.108244
0.400000 0.106085
0.390000 0.103889
0.380000 0.101663
0.370000 0.099414
0.360000 0.097148
0.350000 0.094870
0.340000 0.092589
0.330000 0.090309
0.320000 0.088037
0.310000 0.085779
0.300000 0.083541
0.290000 0.081329
0.280000 0.079149
0.270000 0.077006
0.260000 0.074906
0.250000 0.072855
0.240000 0.070858
0.230000 0.068920
0.220000 0.067047
0.210000 0.065242
0.113262 0.047023
0.110002 0.042718
0.106385 0.038580
0.102428 0.034615
0.098146 0.030832
0.093556 0.027239
0.088673 0.023844
0.083516 0.020652
0.078101 0.017670
0.072448 0.014904
0.066574 0.012361
0.060499 0.010044
0.054241 0.007958
0.047820 0.006108
0.041256 0.004497
0.034569 0.003129
0.027779 0.002005
0.020907 0.001129
0.013972 0.000502
0.006997 0.000126
0.000000 0.000000
0.000000 0.000000
-0.003997 0.000126
-0.007972 0.000502
-0.011907 0.001129
-0.015779 0.002005
-0.019569 0.003129
-0.023256 0.004497
-0.026820 0.006108
-0.030241 0.007958
-0.033499 0.010044
-0.036574 0.012361
-0.039448 0.014904
-0.042101 0.017670
-0.044516 0.020652
-0.046673 0.023844
-0.048556 0.027239
-0.050146 0.030832
-0.051428 0.034615
-0.052385 0.038580
-0.053002 0.042718
-0.053262 0.047023
-0.053153 0.051484
-0.052659 0.056093
-0.051768 0.060841
-0.050467 0.065717
-0.048744 0.070711
-0.046588 0.075813
-0.043988 0.081012
-0.040935 0.086297
-0.037420 0.091658
-0.033435 0.097082
-0.028972 0.102558
-0.024025 0.108074
-0.018589 0.113618
-0.012657 0.119178
-0.006228 0.124741
0.000704 0.130295
0.008139 0.135828
0.016079 0.141326
0.024525 0.146777
0.033475 0.152169
0.042930 0.157488
0.052885 0.162722
0.063339 0.167858
0.074287 0.172883
0.085723 0.177784
0.097643 0.182549
0.110038 0.187166
0.122902 0.191621
0.136226 0.195903
0.150000 0.200000
0.164214 0.203899
0.178856 0.207590
0.193914 0.211059
0.209376 0.214297
0.225227 0.217291
0.241453 0.220032
0.258039 0.222509
0.274968 0.224711
0.292223 0.226629
0.309787 0.228254
0.327641 0.229575
0.345766 0.230585
0.364142 0.231274
0.382749 0.231636
0.401566 0.231662
0.420570 0.231345
0.439740 0.230679
0.459054 0.229657
0.478486 0.228274
0.498015 0.226525
0.517615 0.224404
0.537262 0.221908
0.556930 0.219032
0.576595 0.215775
0.596231 0.212132
0.615811 0.208102
0.635310 0.203684
0.654700 0.198876
0.673956 0.193679
0.693050 0.188091
0.711955 0.182115
0.730644 0.175751
0.749091 0.169002
0.767268 0.161869
0.785149 0.154357
0.802706 0.146468
0.819913 0.138207
0.836742 0.129580
0.853169 0.120591
0.869166 0.111246
0.884707 0.101553
0.899768 0.091518
0.914322 0.081149
0.928345 0.070455
0.941813 0.059445
0.954701 0.048128
0.966987 0.036514
0.978646 0.024614
0.989658 0.012439
1.000000 0.000000

A little outdated, but I still came across this post.

My solution for the leading edge circle is to first interpolate a spline through the airfoil coordinates. This gives a smooth parametric representation of the airfoil. Then calculate the curvature and curvature circles for the parametric curve and take the smallest circle. This defines the leading edge position and returns the radius there as well.

Below there are two Python functions (relying on the numpy and scipy packages) doing that:

def spline(self, x, y, points=200, degree=2, evaluate=False):
    """Interpolate spline through given points

    Args:
        spline (int, optional): Number of points on the spline
        degree (int, optional): Degree of the spline
        evaluate (bool, optional): If True, evaluate spline just at
                                   the coordinates of the knots
    """

    # interpolate B-spline through data points
    # returns knots of control polygon
    # tck ... tuple (t,c,k) containing the vector of knots,
    # the B-spline coefficients, and the degree of the spline.
    # u ... array of the parameters for each knot
    # NOTE: s=0.0 is important as no smoothing should be done on the spline
    # after interpolating it
    tck, u = interpolate.splprep([x, y], s=0.0, k=degree)

    # number of points on interpolated B-spline (parameter t)
    t = np.linspace(0.0, 1.0, points)

    # if True, evaluate spline just at the coordinates of the knots
    if evaluate:
        t = u

    # evaluate B-spline at given parameters
    # der=0: returns point coordinates
    coo = interpolate.splev(t, tck, der=0)

    # evaluate 1st derivative at given parameters
    der1 = interpolate.splev(t, tck, der=1)

    # evaluate 2nd derivative at given parameters
    der2 = interpolate.splev(t, tck, der=2)

    spline_data = [coo, u, t, der1, der2, tck]

    return spline_data

Function to calculate the curvature properties of a parametric curve:

    def getCurvature(spline_data):
    """Curvature and radius of curvature of a parametric curve

    der1 is dx/dt and dy/dt at each point
    der2 is d2x/dt2 and d2y/dt2 at each point

    Returns:
        float: Tuple of numpy arrays carrying gradient of the curve,
               the curvature, radiusses of curvature circles and
               curvature circle centers for each point of the curve
    """

    coo = spline_data[0]
    der1 = spline_data[3]
    der2 = spline_data[4]

    xd = der1[0]
    yd = der1[1]
    x2d = der2[0]
    y2d = der2[1]
    n = xd**2 + yd**2
    d = xd*y2d - yd*x2d

    # gradient dy/dx = dy/du / dx/du
    gradient = der1[1] / der1[0]

    # radius of curvature
    R = n**(3./2.) / abs(d)

    # curvature
    C = d / n**(3./2.)

    # coordinates of curvature-circle center points
    xc = coo[0] - R * yd / np.sqrt(n)
    yc = coo[1] + R * xd / np.sqrt(n)

    return [gradient, C, R, xc, yc]

Example:

Detail:

Note that I also use a refinement of the spline at the leading edge. The corresponding algorithm is not presented here (as off topic).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!