I need to run a bootstrap on a time series with non-standard dependence. So to do this I need to create a function that simulates the time series by making time by time adjustments.
testing<-function(){
sampleData<-as.zoo(data.frame(index=1:1000,vol=(rnorm(1000))^2,x=NA))
sampleData[,"x"]<-sampleData[,"vol"]+rnorm(1000) #treat this is completely exognenous and unknown in connection to vol
sampleData<-cbind(sampleData,mean=rollmean(sampleData[,"vol"],k=3,align="right"))
sampleData<-cbind(sampleData,vol1=lag(sampleData[,"vol"],k=-1),x1=lag(sampleData[,"x"],k=-1),mean1=lag(sampleData[,"mean"],k=-1))
#get estimate
mod<-lm(vol~vol1+x1+mean1,data=sampleData)
res<-mod$residuals
for(i in 5:1000){
#recursively estimate
sampleData[i,"vol"]<-as.numeric(predict(mod,newdata=data.frame(sampleData[i-1,])))+res[i-3]
#now must update other paramaters
#first our rolled average
sampleData[i,"mean"]<-mean(sampleData[(i-3):i,"vol"])
#reupdate our lagged variables
sampleData[i,"vol1"]<-sampleData[i-1,"vol"]
sampleData[i,"mean1"]<-sampleData[i-1,"mean"]
}
lm(vol~vol1+x1+mean1,data=sampleData)
}
When I run this code and measure the run time I get
system.time(testing())
user system elapsed
2.711 0.201 2.915
This is a slight problem for me as a will be integrating this code to construct a bootstrap. This means any time taken here is multiplied by about 100 for each step. And I am updating this at a few thousand times. That means a single run will take hours (to days) to run.
Is there anyway to speed this code up?
Kind regards,
Matthew
Here's how to avoid the overhead of predict.lm
. Also note that I used a matrix instead of a zoo object, which would be a tiny bit slower. You can see just how much this slowed down your code. That's the price you pay for convenience.
testing.jmu <- function() {
if(!require(xts)) stop("xts package not installed")
set.seed(21) # for reproducibility
sampleData <- .xts(data.frame(vol=(rnorm(1000))^2,x=NA), 1:1000)
sampleData$x <- sampleData$vol+rnorm(1000)
sampleData$mean <- rollmean(sampleData$vol, k=3, align="right")
sampleData$vol1 <- lag(sampleData$vol,k=1)
sampleData$x1 <- lag(sampleData$x,k=1)
sampleData$mean1 <- lag(sampleData$mean,k=1)
sampleMatrix <- na.omit(cbind(as.matrix(sampleData),constant=1))
mod.fit <- lm.fit(sampleMatrix[,c("constant","vol1","x1","mean1")],
sampleMatrix[,"vol"])
res.fit <- mod.fit$residuals
for(i in 5:nrow(sampleMatrix)){
sampleMatrix[i,"vol"] <-
sum(sampleMatrix[i-1,c("constant","vol1","x1","mean1")] *
mod.fit$coefficients)+res.fit[i-3]
sampleMatrix[i,"mean"] <- mean(sampleMatrix[(i-3):i,"vol"])
sampleMatrix[i,c("vol1","mean1")] <- sampleMatrix[i-1,c("vol","mean")]
}
lm.fit(sampleMatrix[,c("constant","vol1","x1","mean1")], sampleMatrix[,"vol"])
}
system.time(out <- testing.jmu())
# user system elapsed
# 0.05 0.00 0.05
coef(out)
# constant vol1 x1 mean1
# 1.08787779 -0.06487441 0.03416802 -0.02757601
Add the set.seed(21)
call to your function and you'll see that my function returns the same coefficients as yours.
来源:https://stackoverflow.com/questions/12059227/speeding-up-time-series-simulation-for-bootstrap