1.何为阻塞队列
阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作支持阻塞的插入和移除方法。
- 支持阻塞的插入方法:意思是当队列满(无界队列除外)时,队列会阻塞插入元素的线程,直到队列不满。
- 支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空。
阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。阻塞队列对插入和移除两个附加操作提供了4种处理方式。
- 抛出异常:当队列满时,如果再往队列里插入元素,会抛出IllegalStateException("Queuefull")异常。当队列空时,从队列里获取元素会抛出NoSuchElementException异常。
- ·返回特殊值:当往队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有则返回null。
- ·一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列空时,如果消费者线程从队列里take元素,队列会阻塞住消费者线程,直到队列不为空。
- ·超时退出:当阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超过了指定的时间,生产者线程就会退出。
注意:如果是无界阻塞队列,队列不可能会出现满的情况,所以使用put或offer方法永 远不会被阻塞,而且使用offer方法时,该方法永远返回true。
2.阻塞队列
2.1 分类
- ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
- LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。
- PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
- DelayQueue:一个使用优先级队列实现的无界阻塞队列。
- SynchronousQueue:一个不存储元素的阻塞队列。
- LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
- LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
2.2 七种阻塞队列使用详解
- ArrayBlockingQueue:是一个用数组实现的有界阻塞队列。此队列按照先进先出的原则对元素进行排序。默认情况下不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。为了保证公平性,通常会降低吞吐量。访问者的公平性是使用可重入锁实现的。
public class TestBlockingQueue { public static void main(String[] args) { int capacity=1000;//有界队列元素容量,必须>=1 ArrayBlockingQueue<String> arr1=new ArrayBlockingQueue<String>(capacity); ArrayBlockingQueue<String> arr2=new ArrayBlockingQueue<String>(capacity,true);//boolean值表示是否采用公平性原则 } }
- LinkedBlockingQueue:LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为 Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。
- PriorityBlockingQueue:是一个支持优先级的无界阻塞队列。默认情况下元素采取自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化 PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。需要注意的是不能保证 同优先级元素的顺序。
- DelayQueue:DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队 列中的元素必须实现Delayed接口(可以参考ScheduledThreadPoolExecutor 里ScheduledFutureTask类的实现),在创建元素时可以指定多久才能从队列中获取当前元素。 只有在延迟期满时才能从队列中提取元素。该阻塞队列非常有用,比如可以设计缓存系统,使用一个线程循环查询 DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了;还可以做定时任务调度,使用DelayQueue保存当天将会执行的任务和执行时间,一旦从 DelayQueue中获取到任务就开始执行,比如TimerQueue就是使用DelayQueue实现的。
- SynchronousQueue:SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。它支持公平访问队列。默认情况下线程采用非公平性策略访问队列。使用以下构造方法可以创建公平性访问的SynchronousQueue,如果设置为true,则等待的线程会采用先进先出的顺序访问队列。可以将该队列理解为一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合传递性场景。
- LinkedTransferQueue:LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。
- 使用transfer方法:如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法 时),transfer方法可以把生产者传入的元素立transfer(传输)给消费者。如果没有消费者在等 待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返 回。
- tryTransfer方法:tryTransfer方法是用来试探生产者传入的元素是否能直接传给消费者。如果没有消费者等 待接收元素,则返回false。和transfer方法的区别tryTransfer方法无论消费者是否接收,方法 立即返回,而transfer方法是必须等到消费者消费了才返回。 对于带有时间限制的tryTransfer(E e,long timeout,TimeUnit unit)方法,试图把生产者传入 的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超 时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。
- LinkedBlockingDeque:LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。双向队列因为多了一个操作队列的入口,在多线程同时入队 时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst、 addLast、offerFirst、offerLast、peekFirst和peekLast等方法,以First单词结尾的方法,表示插入、 获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入、获取或移除双 端队列的最后一个元素。另外,插入方法add等同于addLast,移除方法remove等效于 removeFirst。但是take方法却等同takeFirst
3.阻塞队列实现原理
JDK通过通知模式实现。所谓通知模式,就是当生产者往满的队列里添加元素时会阻塞住生产者,当消费者消费了一个队列中的元素后,会通知生产者当前队列可用。通过查看JDK源码 发现ArrayBlockingQueue使用了Condition来实现。也就是通过await/signal来实现。
final Object[] items;
final ReentrantLock lock;
private final Condition notEmpty;
private final Condition notFull;
int count;
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
enqueue(e);
} finally {
lock.unlock();
}
}
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0)
notEmpty.await();
return dequeue();
} finally {
lock.unlock();
}
}
private void enqueue(E x) {
// assert lock.getHoldCount() == 1;
// assert items[putIndex] == null;
final Object[] items = this.items;
items[putIndex] = x;
if (++putIndex == items.length)
putIndex = 0;
count++;
notEmpty.signal();
}
private E dequeue() {
// assert lock.getHoldCount() == 1;
// assert items[takeIndex] != null;
final Object[] items = this.items;
@SuppressWarnings("unchecked")
E x = (E) items[takeIndex];
items[takeIndex] = null;
if (++takeIndex == items.length)
takeIndex = 0;
count--;
if (itrs != null)
itrs.elementDequeued();
notFull.signal();
return x;
}
来源:oschina
链接:https://my.oschina.net/u/3352298/blog/1807780