Compressing a sparse bit array

醉酒当歌 提交于 2019-12-05 21:22:28

I've dealt deeply with a similar problem, but my sets are much bigger (30 million possible values with between 1 and 30 million elements in each set), so they both gain much more from compression and the compression metadata is insignificant compared to the size of the data. I have never gone down to squeezing things into units smaller than uint16_t, so the things I write below might not apply if you start chopping up 13 bit values into pieces. It feels like it should work, but caveat emptor.

What I've found works is to employ several strategies that depend on the particular data we have. The good news is that the count of elements in each set is a very good indicator of which compression strategy will work best for a particular set. So all the metadata you need is a count of elements in the set. In my data format the first and only metadata value (I'll be unspecific and just call it "value", you can squeeze things in bytes, 16 bit values or 13 bit values however you feel) is the count of elements in the set, the rest is just the encoding of the set elements.

The strategies are:

  1. If very few elements are in the set, you can't do better than an array that says "1, 4711, 8140", so in this case the data is encoded as: [3, 1, 4711, 8140]

  2. If almost all elements are in the set, you can just keep track of elements that aren't. For example [8190, 17, 42].

  3. If around half of the elements are in the set you pretty much can't do much better than a bitmap, so you get [4000, {bitmap}], this is the only case where your data ends up being longer than strictly uncompressed.

  4. If more than "a few" but many fewer than "around half" elements are set, I found another strategy. Divide the bits of your possible values in the set in half. Let's say we have 2^16 (it's easier to describe, it should probably work for 2^13) possible values. The values are divided into 256 ranges with each range with 256 possible values. We then have an array with 256 bytes, each of these bytes describes how many values are in each range (so byte 0 tells us how many elements are [0,255], byte 1 gives us [256,511], etc.) immediately after follow arrays with the values in each range mod 256. The trick here is that while every element in the set encoded as an array (strategy 1) would be 2 bytes, in this scheme each element is only 1 bytes + 256 static bytes for the counts of elements. This means that as soon as we have more than 256 elements in the set this saves us space by switching from strategy 1 to 4.

  5. Strategy 4 can be refined (probably meaningless if your data is random as you mention, but my data had more patterns sometimes, so it worked for me). Since we still need 8 bits for each element in the previous encoding, as soon as a sub-array of elements goes over 32 elements (256 bytes), we can store it as a bitmap instead. This is also a good breakpoint for switching strategies between 4/5 to 3. If all the arrays in this strategy are just bitmaps, then we should just use strategy 3 (it's more complicated than that, but the breakpoint between strategies can be precomputed quite accurately that you'll end up picking the most likely efficient strategy each time).

I have only vaguely tried saving deltas between numbers in the set. Quick experiments showed that they weren't really much more efficient than the strategies I mentioned above, had unpredictable degenerate cases, but most importantly, the application I work with really likes to not have to deserialise its data, just use it raw straight from disk (mmap).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!