i am trying to do multilabel classification using sci-kit learn 0.17 my data looks like
training
Col1 Col2
asd dfgfg [1,2,3]
poioi oiopiop [4]
test
Col1
asdas gwergwger
rgrgh hrhrh
my code so far
import numpy as np
from sklearn import svm, datasets
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
def getLabels():
traindf = pickle.load(open("train.pkl","rb"))
X = traindf['Col1']
y = traindf['Col2']
# Binarize the output
from sklearn.preprocessing import MultiLabelBinarizer
y=MultiLabelBinarizer().fit_transform(y)
random_state = np.random.RandomState(0)
# Split into training and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,
random_state=random_state)
# Run classifier
from sklearn import svm, datasets
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
but now i get
ValueError: could not convert string to float: <value of Col1 here>
on
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
do i have to binarize X as well? why do i need to convert the X dimension to float?
Yes, you must to transform X into numeric representation (not necessary binary) as well as y. That's because all machine learning methods operate on matrices of numbers.
How to do this exactly? If every sample in Col1 can have different words in it (i.e. it represents some text) - you can transform that column with CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer
col1 = ["cherry banana", "apple appricote", "cherry apple", "banana apple appricote cherry apple"]
cv = CountVectorizer()
cv.fit_transform(col1)
#<4x4 sparse matrix of type '<class 'numpy.int64'>'
# with 10 stored elements in Compressed Sparse Row format>
cv.fit_transform(col1).toarray()
#array([[0, 0, 1, 1],
# [1, 1, 0, 0],
# [1, 0, 0, 1],
# [2, 1, 1, 1]], dtype=int64)
来源:https://stackoverflow.com/questions/34275475/python-sci-kit-learn-multilabel-classification-valueerror-could-not-convert-s