【线程dump详解jstack&full gc】

半城伤御伤魂 提交于 2019-12-05 16:35:39

一、jstack命令

jstack Dump 日志文件中的线程状态
dump 文件里,值得关注的线程状态有:
  1. 死锁,Deadlock(重点关注) 
  2. 执行中,Runnable   
  3. 等待资源,Waiting on condition(重点关注) 
  4. 等待获取监视器,Waiting on monitor entry(重点关注)
  5. 暂停,Suspended
  6. 对象等待中,Object.wait() 或 TIMED_WAITING
  7. 阻塞,Blocked(重点关注)  
  8. 停止,Parked

下面我们先从第一个例子开始分析,然后再列出不同线程状态的含义以及注意事项,最后再补充两个实例。

综合示范一:Waiting to lock 和 Blocked
实例如下:
"RMI TCP Connection(267865)-172.16.5.25" daemon prio=10 tid=0x00007fd508371000 nid=0x55ae waiting for monitor entry [0x00007fd4f8684000]
   java.lang.Thread.State: BLOCKED (on object monitor)
at org.apache.log4j.Category.callAppenders(Category.java:201)
- waiting to lock <0x00000000acf4d0c0> (a org.apache.log4j.Logger)
at org.apache.log4j.Category.forcedLog(Category.java:388)
at org.apache.log4j.Category.log(Category.java:853)
at org.apache.commons.logging.impl.Log4JLogger.warn(Log4JLogger.java:234)
at com.tuan.core.common.lang.cache.remote.SpyMemcachedClient.get(SpyMemcachedClient.java:110)
……
1)线程状态是 Blocked,阻塞状态。说明线程等待资源超时!
2) waiting to lock <0x00000000acf4d0c0>”指,线程在等待给这个 0x00000000acf4d0c0 地址上锁(英文可描述为:trying to obtain  0x00000000acf4d0c0 lock)。
3)在 dump 日志里查找字符串 0x00000000acf4d0c0,发现有大量线程都在等待给这个地址上锁。如果能在日志里找到谁获得了这个锁(如locked < 0x00000000acf4d0c0 >),就可以顺藤摸瓜了。
4)waiting for monitor entry说明此线程通过 synchronized(obj) {……} 申请进入了临界区,从而进入了下图1中的“Entry Set”队列,但该 obj 对应的 monitor 被其他线程拥有,所以本线程在 Entry Set 队列中等待。
5)第一行里,"RMI TCP Connection(267865)-172.16.5.25"是 Thread Name 。tid指Java Thread id。nid指native线程的id。prio是线程优先级。[0x00007fd4f8684000]是线程栈起始地址。
 
Dump文件中的线程状态含义及注意事项

含义如下所示:

  • Deadlock:死锁线程,一般指多个线程调用间,进入相互资源占用,导致一直等待无法释放的情况。
  • Runnable:一般指该线程正在执行状态中,该线程占用了资源,正在处理某个请求,有可能正在传递SQL到数据库执行,有可能在对某个文件操作,有可能进行数据类型等转换。
  • Waiting on condition:等待资源,或等待某个条件的发生。具体原因需结合 stacktrace来分析。
    • 如果堆栈信息明确是应用代码,则证明该线程正在等待资源。一般是大量读取某资源,且该资源采用了资源锁的情况下,线程进入等待状态,等待资源的读取。
    • 又或者,正在等待其他线程的执行等。
    • 如果发现有大量的线程都在处在 Wait on condition,从线程 stack看,正等待网络读写,这可能是一个网络瓶颈的征兆。因为网络阻塞导致线程无法执行。
      • 一种情况是网络非常忙,几乎消耗了所有的带宽,仍然有大量数据等待网络读写;
      • 另一种情况也可能是网络空闲,但由于路由等问题,导致包无法正常的到达。
    • 另外一种出现 Wait on condition的常见情况是该线程在 sleep,等待 sleep的时间到了时候,将被唤醒。
  • Blocked:线程阻塞,是指当前线程执行过程中,所需要的资源长时间等待却一直未能获取到,被容器的线程管理器标识为阻塞状态,可以理解为等待资源超时的线程。
  • Waiting for monitor entry 和 in Object.wait():Monitor是 Java中用以实现线程之间的互斥与协作的主要手段,它可以看成是对象或者 Class的锁。每一个对象都有,也仅有一个 monitor。从下图1中可以看出,每个 Monitor在某个时刻,只能被一个线程拥有,该线程就是 “Active Thread”,而其它线程都是 “Waiting Thread”,分别在两个队列 “ Entry Set”和 “Wait Set”里面等候。在 “Entry Set”中等待的线程状态是 “Waiting for monitor entry”,而在 “Wait Set”中等待的线程状态是 “in Object.wait()”。

http://images.cnblogs.com/cnblogs_com/zhengyun_ustc/255879/o_clipboard%20-%20%E5%89%AF%E6%9C%AC039.png

图1 A Java Monitor

 

综合示范二:Waiting on condition 和 TIMED_WAITING
实例如下:
"RMI TCP Connection(idle)" daemon prio=10 tid=0x00007fd50834e800 nid=0x56b2 waiting on condition [0x00007fd4f1a59000]
   java.lang.Thread.State: TIMED_WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for  <0x00000000acd84de8> (a java.util.concurrent.SynchronousQueue$TransferStack)
at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:198)
at java.util.concurrent.SynchronousQueue$TransferStack.awaitFulfill(SynchronousQueue.java:424)
at java.util.concurrent.SynchronousQueue$TransferStack.transfer(SynchronousQueue.java:323)
at java.util.concurrent.SynchronousQueue.poll(SynchronousQueue.java:874)
at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:945)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907)
at java.lang.Thread.run(Thread.java:662)
1)TIMED_WAITING (parking)中的 timed_waiting 指等待状态,但这里指定了时间,到达指定的时间后自动退出等待状态;parking指线程处于挂起中。

2)waiting on condition需要与堆栈中的parking to wait for  <0x00000000acd84de8> (a java.util.concurrent.SynchronousQueue$TransferStack)”结合来看。首先,本线程肯定是在等待某个条件的发生,来把自己唤醒。其次,SynchronousQueue 并不是一个队列,只是线程之间移交信息的机制,当我们把一个元素放入到 SynchronousQueue 中时必须有另一个线程正在等待接受移交的任务,因此这就是本线程在等待的条件。
3)别的就看不出来了。

综合示范三:in Obejct.wait() 和 TIMED_WAITING

实例如下:
"RMI RenewClean-[172.16.5.19:28475]" daemon prio=10 tid=0x0000000041428800 nid=0xb09 in Object.wait() [0x00007f34f4bd0000]
   java.lang.Thread.State: TIMED_WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x00000000aa672478> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118)
- locked <0x00000000aa672478> (a java.lang.ref.ReferenceQueue$Lock)
at sun.rmi.transport.DGCClient$EndpointEntry$RenewCleanThread.run(DGCClient.java:516)
at java.lang.Thread.run(Thread.java:662)
1)TIMED_WAITING (on object monitor)”,对于本例而言,是因为本线程调用了 java.lang.Object.wait(long timeout) 而进入等待状态。

2)“Wait Set”中等待的线程状态就是“ in Object.wait() ”。当线程获得了 Monitor,进入了临界区之后,如果发现线程继续运行的条件没有满足,它则调用对象(一般就是被 synchronized 的对象)的 wait() 方法,放弃了 Monitor,进入 “Wait Set”队列。只有当别的线程在该对象上调用了 notify() 或者 notifyAll() ,“ Wait Set”队列中线程才得到机会去竞争,但是只有一个线程获得对象的 Monitor,恢复到运行态。

3)RMI RenewClean 是 DGCClient 的一部分。DGC 指的是 Distributed GC,即分布式垃圾回收。

4)请注意,是先 locked <0x00000000aa672478>,后 waiting on <0x00000000aa672478>,之所以先锁再等同一个对象,请看下面它的代码实现:
static private class  Lock { };
private Lock lock = new Lock();
public Reference<? extends T> remove(long timeout)
{
    synchronized (lock) {
        Reference<? extends T> r = reallyPoll();
        if (r != null) return r;
        for (;;) {
            .wait(timeout);
            r = reallyPoll();
            ……
       }
}
即,线程的执行中,先用 synchronized 获得了这个对象的 Monitor(对应于  locked <0x00000000aa672478> );当执行到 lock.wait(timeout);,线程就放弃了 Monitor 的所有权,进入“Wait Set”队列(对应于  waiting on <0x00000000aa672478> )。
5)从堆栈信息看,是正在清理 remote references to remote objects ,引用的租约到了,分布式垃圾回收在逐一清理呢。
 
二、系统运行缓慢
1、Full GC次数过多
对于full gc较多的情况,主要有一下两个特征
  • 线上多个线程的CPU都超过了100%,通过jstack命令可以看到这些线程主要是垃圾回收线程

  • 通过jstat命令监控GC情况,可以看到Full GC次数非常多,并且次数在不断增加。

 定位问题步骤:
 
1、先用top命令查看那个进程占用的cpu资源多(pid)
2、然后用top -Hp pid查找当前进程下消耗cpu资源多的线程id
3、把线程id转换成十六进制 ( printf "%x\n" 线程id
4、jstack -l pid 打印线程堆栈,在此文件内查找多对应的“十六进制的线程id”
5、如果在线程堆栈里面出现:VM Thread,并且VM Thread一行的最后显示 nid=0xa,这里nid的意思就是操作系统线程id的意思。
VM Thread指的就是垃圾回收的线程。这里我们基本上可以确定,当前系统缓慢的原因主要是垃圾回收过于频繁,导致GC停顿时间较长。
我们通过如下命令可以查看GC的情况:(jstat -gcutil 9 1000 10

 

root@8d36124607a0:/# jstat -gcutil 9 1000 10

 

 

S0    S1    E    O     M    CCS    YGC   YGCT   FGC   FGCT    GCT

 

 

0.00 0.00 0.00 75.07 59.09  59.60  3259  0.919  6517  7.715   8.635

 

 

0.00 0.00 0.00 0.08  59.09  59.60  3306  0.930  6611  7.822   8.752

 

 

0.00 0.00 0.00 0.08  59.09  59.60  3351  0.943  6701  7.924   8.867

 

0.00 0.00 0.00 0.08  59.09  59.60  3397  0.955  6793  8.029   8.984

可以看到,这里FGC指的是Full GC数量,这里高达6793,而且还在不断增长。从而进一步证实了是由于内存溢出导致的系统缓慢。那么这里确认了内存溢出,但是如何查看你是哪些对象导致的内存溢出呢,这个可以dump出内存日志,然后通过eclipse的mat工具进行查看,如下是其展示的一个对象树结构:
|-- dump命令:jmap -dump:format=b,file=/app/eip/jamp1562.hprof  pid

 

 经过mat工具分析之后,我们基本上就能确定内存中主要是哪个对象比较消耗内存,然后找到该对象的创建位置,进行处理即可。这里的主要是PrintStream最多,但是我们也可以看到,其内存消耗量只有12.2%。也就是说,其还不足以导致大量的Full GC此时我们需要考虑另外一种情况,就是代码或者第三方依赖的包中有显示的 System.gc()调用。这种情况我们查看dump内存得到的文件即可判断,因为其会打印GC原因:

[Full GC (System.gc()) [Tenured: 262546K->262546K(349568K), 0.0014879 secs] 262546K->262546K(506816K), [Metaspace: 3109K->3109K(1056768K)], 0.0015151 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

[GC (Allocation Failure) [DefNew: 2795K->0K(157248K), 0.0001504 secs][Tenured: 262546K->402K(349568K), 0.0012949 secs] 265342K->402K(506816K), [Metaspace: 3109K->3109K(1056768K)], 0.0014699 secs] [Times: user=0.00

 

比如这里第一次GC是由于 System.gc()的显示调用导致的,而第二次GC则是JVM主动发起的。总结来说,对于Full GC次数过多,主要有以下两种原因:

  • 代码中一次获取了大量的对象,导致内存溢出,此时可以通过eclipse的mat工具查看内存中有哪些对象比较多;

  • 内存占用不高,但是Full GC次数还是比较多,此时可能是显示的 System.gc()调用导致GC次数过多,这可以通过添加 -XX:+DisableExplicitGC来禁用JVM对显示GC的响应。

2、CPU过高
思路和第一条一样
 
3、不定期出现的接口耗时现象

对于这种情况,比较典型的例子就是,我们某个接口访问经常需要2~3s才能返回。这是比较麻烦的一种情况,因为一般来说,其消耗的CPU不多,而且占用的内存也不高,也就是说,我们通过上述两种方式进行排查是无法解决这种问题的。而且由于这样的接口耗时比较大的问题是不定时出现的,这就导致了我们在通过 jstack命令即使得到了线程访问的堆栈信息,我们也没法判断具体哪个线程是正在执行比较耗时操作的线程。

对于不定时出现的接口耗时比较严重的问题,我们的定位思路基本如下:首先找到该接口,通过压测工具不断加大访问力度,如果说该接口中有某个位置是比较耗时的,由于我们的访问的频率非常高,那么大多数的线程最终都将阻塞于该阻塞点,这样通过多个线程具有相同的堆栈日志,我们基本上就可以定位到该接口中比较耗时的代码的位置。如下是一个代码中有比较耗时的阻塞操作通过压测工具得到的线程堆栈日志:

"http-nio-8080-exec-2" #29 daemon prio=5 os_prio=31 tid=0x00007fd08cb26000 nid=0x9603 waiting on condition [0x00007000031d5000]

java.lang.Thread.State: TIMED_WAITING (sleeping)

at java.lang.Thread.sleep(Native Method)

at java.lang.Thread.sleep(Thread.java:340)

at java.util.concurrent.TimeUnit.sleep(TimeUnit.java:386)

at com.aibaobei.user.controller.UserController.detail(UserController.java:18)


"http-nio-8080-exec-3" #30 daemon prio=5 os_prio=31 tid=0x00007fd08cb27000 nid=0x6203 waiting on condition [0x00007000032d8000]

java.lang.Thread.State: TIMED_WAITING (sleeping)

at java.lang.Thread.sleep(Native Method)

at java.lang.Thread.sleep(Thread.java:340)

at java.util.concurrent.TimeUnit.sleep(TimeUnit.java:386)

at com.aibaobei.user.controller.UserController.detail(UserController.java:18)


"http-nio-8080-exec-4" #31 daemon prio=5 os_prio=31 tid=0x00007fd08d0fa000 nid=0x6403 waiting on condition [0x00007000033db000]

java.lang.Thread.State: TIMED_WAITING (sleeping)

at java.lang.Thread.sleep(Native Method)

at java.lang.Thread.sleep(Thread.java:340)

at java.util.concurrent.TimeUnit.sleep(TimeUnit.java:386)

at com.aibaobei.user.controller.UserController.detail(UserController.java:18)

从上面的日志可以看你出,这里有多个线程都阻塞在了UserController的第18行,说明这是一个阻塞点,也就是导致该接口比较缓慢的原因。

 4. 某个线程进入WAITING状态
 

对于这种情况,这是比较罕见的一种情况,但是也是有可能出现的,而且由于其具有一定的“不可复现性”,因而我们在排查的时候是非常难以发现的。笔者曾经就遇到过类似的这种情况,具体的场景是,在使用CountDownLatch时,由于需要每一个并行的任务都执行完成之后才会唤醒主线程往下执行。而当时我们是通过CountDownLatch控制多个线程连接并导出用户的gmail邮箱数据,这其中有一个线程连接上了用户邮箱,但是连接被服务器挂起了,导致该线程一直在等待服务器的响应。最终导致我们的主线程和其余几个线程都处于WAITING状态。

对于这样的问题,查看过jstack日志的读者应该都知道,正常情况下,线上大多数线程都是处于 TIMED_WAITING状态,而我们这里出问题的线程所处的状态与其是一模一样的,这就非常容易混淆我们的判断。解决这个问题的思路主要如下:

  • 通过grep在jstack日志中找出所有的处于 TIMED_WAITING状态的线程,将其导出到某个文件中,如a1.log,如下是一个导出的日志文件示例:

 
"Attach Listener" #13 daemon prio=9 os_prio=31 tid=0x00007fe690064000 nid=0xd07 waiting on condition [0x0000000000000000]

"DestroyJavaVM" #12 prio=5 os_prio=31 tid=0x00007fe690066000 nid=0x2603 waiting on condition [0x0000000000000000]

"Thread-0" #11 prio=5 os_prio=31 tid=0x00007fe690065000 nid=0x5a03 waiting on condition [0x0000700003ad4000]

"C1 CompilerThread3" #9 daemon prio=9 os_prio=31 tid=0x00007fe68c00a000 nid=0xa903 waiting on condition [0x0000000000000000]
  • 等待一段时间之后,比如10s,再次对jstack日志进行grep,将其导出到另一个文件,如a2.log,结果如下所示:

"DestroyJavaVM" #12 prio=5 os_prio=31 tid=0x00007fe690066000 nid=0x2603 waiting on condition [0x0000000000000000]

"Thread-0" #11 prio=5 os_prio=31 tid=0x00007fe690065000 nid=0x5a03 waiting on condition [0x0000700003ad4000]

"VM Periodic Task Thread" os_prio=31 tid=0x00007fe68d114000 nid=0xa803 waiting on condition
  • 重复步骤2,待导出3~4个文件之后,我们对导出的文件进行对比,找出其中在这几个文件中一直都存在的用户线程,这个线程基本上就可以确认是包含了处于等待状态有问题的线程。因为正常的请求线程是不会在20~30s之后还是处于等待状态的。

  • 经过排查得到这些线程之后,我们可以继续对其堆栈信息进行排查,如果该线程本身就应该处于等待状态,比如用户创建的线程池中处于空闲状态的线程,那么这种线程的堆栈信息中是不会包含用户自定义的类的。这些都可以排除掉,而剩下的线程基本上就可以确认是我们要找的有问题的线程。通过其堆栈信息,我们就可以得出具体是在哪个位置的代码导致该线程处于等待状态了

这里需要说明的是,我们在判断是否为用户线程时,可以通过线程最前面的线程名来判断,因为一般的框架的线程命名都是非常规范的,我们通过线程名就可以直接判断得出该线程是某些框架中的线程,这种线程基本上可以排除掉。而剩余的,比如上面的 Thread-0,以及我们可以辨别的自定义线程名,这些都是我们需要排查的对象。

经过上面的方式进行排查之后,我们基本上就可以得出这里的 Thread-0就是我们要找的线程,通过查看其堆栈信息,我们就可以得到具体是在哪个位置导致其处于等待状态了。如下示例中则是在SyncTask的第8行导致该线程进入等待了。

"Thread-0" #11 prio=5 os_prio=31 tid=0x00007f9de08c7000 nid=0x5603 waiting on condition [0x0000700001f89000]

java.lang.Thread.State: WAITING (parking)

at sun.misc.Unsafe.park(Native Method)

at java.util.concurrent.locks.LockSupport.park(LockSupport.java:304)

at com.aibaobei.chapter2.eg4.SyncTask.lambda$main$0(SyncTask.java:8)

at com.aibaobei.chapter2.eg4.SyncTask$$Lambda$1/1791741888.run(Unknown Source)

at java.lang.Thread.run(Thread.java:748)

5. 死锁

对于死锁,这种情况基本上很容易发现,因为 jstack可以帮助我们检查死锁,并且在日志中打印具体的死锁线程信息。如下是一个产生死锁的一个 jstack日志示例

 

 可以看到,在jstack日志的底部,其直接帮我们分析了日志中存在哪些死锁,以及每个死锁的线程堆栈信息。这里我们有两个用户线程分别在等待对方释放锁,而被阻塞的位置都是在ConnectTask的第5行,此时我们就可以直接定位到该位置,并且进行代码分析,从而找到产生死锁的原因。

 
 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!