一、线性相关性
给定一些向量,那么如何判断他们是否是线性相关?(也就是存在非全0系数,使得系数与向量相乘加和结果为0向量)
如果我们可以找到一些系数,使得这些系数乘以相应的向量,然后加和结果可以得到零向量,则这些向量就是线性相关的,但这些系数不能全是0
对于矩阵中的列向量而言:
对于矩阵$A$中的列向量$v_1,v_2,v_3,...,v_n$,如果它们是无关的,$A$的零空间中只有零向量,此时$A$的秩=n,不存在自由变量
反之,对于$AC = 0$,零空间中存在非零向量c,$A$的秩<n,存在自由变量
二、向量组生成一个空间
其实之前矩阵的列空间已经讲过,矩阵的各个列向量的线性组合组成列空间,所以我们可以说矩阵的(各列)列向量生成列空间
对于向量$v_1, v_2, ... , v_l$生成一个空间指:这个空间包含$v_1, v_2, ... ,v_l$的所有线性组合