import numpy as np
import tensorflow as tf
import pickle
import matplotlib.pyplot as plt
print("TensorFlow Version: {}".format(tf.__version__))
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data/')
# ## Train
# 定义参数
batch_size = 64
noise_size = 100
epochs = 5
n_samples = 25
learning_rate = 0.001
beta1 = 0.4
class DCGAN():
@staticmethod
def get_inputs(noise_dim, image_height, image_width, image_depth):
inputs_real = tf.placeholder(tf.float32, [None, image_height, image_width, image_depth], name='inputs_real')
inputs_noise = tf.placeholder(tf.float32, [None, noise_dim], name='inputs_noise')
return inputs_real, inputs_noise
def get_generator(self, noise_img, output_dim, is_train=True, alpha=0.01):
"""
@Author: Nelson Zhao
--------------------
:param noise_img: 噪声信号,tensor类型
:param output_dim: 生成图片的depth
:param is_train: 是否为训练状态,该参数主要用于作为batch_normalization方法中的参数使用
:param alpha: Leaky ReLU系数
"""
with tf.variable_scope("generator") as scope0:
if not is_train:
scope0.reuse_variables()
# none*100 to none*4 x 4 x 512
# 全连接层
layer1 = tf.layers.dense(noise_img, 4*4*512)
layer1 = tf.reshape(layer1, [-1, 4, 4, 512])
# batch normalization
layer1 = tf.layers.batch_normalization(layer1, training=is_train)
# Leaky ReLU
layer1 = tf.maximum(alpha * layer1, layer1)
# dropout
layer1 = tf.nn.dropout(layer1, keep_prob=0.8)
# 4 x 4 x 512 to 7 x 7 x 256
#卷积的一个逆向过程
layer2 = tf.layers.conv2d_transpose(layer1, 256, 4, strides=1, padding='valid')
layer2 = tf.layers.batch_normalization(layer2, training=is_train)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8)
# 7 x 7 256 to 14 x 14 x 128
layer3 = tf.layers.conv2d_transpose(layer2, 128, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=is_train)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8)
# 14 x 14 x 128 to 28 x 28 x 1
logits = tf.layers.conv2d_transpose(layer3, output_dim, 3, strides=2, padding='same')
# MNIST原始数据集的像素范围在0-1,这里的生成图片范围为(-1,1)
# 因此在训练时,记住要把MNIST像素范围进行resize
outputs = tf.tanh(logits)
return outputs
def get_discriminator(self, inputs_img, reuse=False, alpha=0.01):
"""
@Author: Nelson Zhao
--------------------
@param inputs_img: 输入图片,tensor类型
@param alpha: Leaky ReLU系数
"""
with tf.variable_scope("discriminator") as scope1:
# 28 x 28 x 1 to 14 x 14 x 128
# 第一层不加入BN
if reuse:
scope1.reuse_variables()
layer1 = tf.layers.conv2d(inputs_img, 128, 3, strides=2, padding='same')
layer1 = tf.maximum(alpha * layer1, layer1)
layer1 = tf.nn.dropout(layer1, keep_prob=0.8)
# 14 x 14 x 128 to 7 x 7 x 256
layer2 = tf.layers.conv2d(layer1, 256, 3, strides=2, padding='same')
layer2 = tf.layers.batch_normalization(layer2, training=True)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8)
# 7 x 7 x 256 to 4 x 4 x 512
layer3 = tf.layers.conv2d(layer2, 512, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=True)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8)
# 4 x 4 x 512 to 4*4*512 x 1
flatten = tf.reshape(layer3, (-1, 4*4*512)) # (?,8192)
logits = tf.layers.dense(flatten, 1) # (?, 1)
outputs = tf.sigmoid(logits) # (?, 1)
return logits, outputs
def get_loss(self,inputs_real, inputs_noise, image_depth, smooth=0.1):
"""
@Author: Nelson Zhao
--------------------
@param inputs_real: 输入图片,tensor类型
@param inputs_noise: 噪声图片,tensor类型
@param image_depth: 图片的depth(或者叫channel)
@param smooth: label smoothing的参数
"""
g_outputs = self.get_generator(inputs_noise, image_depth, is_train=True)
d_logits_real, d_outputs_real = self.get_discriminator(inputs_real)
d_logits_fake, d_outputs_fake = self.get_discriminator(g_outputs, reuse=True)
# 计算Loss
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.ones_like(d_outputs_fake)*(1-smooth)))
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels=tf.ones_like(d_outputs_real)*(1-smooth)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.zeros_like(d_outputs_fake)))
d_loss = tf.add(d_loss_real, d_loss_fake)
return g_loss, d_loss
def get_optimizer(self,g_loss, d_loss, beta1=0.4, learning_rate=0.001):
"""
@Author: Nelson Zhao
--------------------
@param g_loss: Generator的Loss
@param d_loss: Discriminator的Loss
@learning_rate: 学习率
"""
train_vars = tf.trainable_variables() #抓取所有的变量
g_vars = [var for var in train_vars if var.name.startswith("generator")]
d_vars = [var for var in train_vars if var.name.startswith("discriminator")]
# Optimizer 就会返回所有定义的summary op
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
g_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
d_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
return g_opt, d_opt
def show_generator_output(self, sess, n_images, inputs_noise, output_dim):
noise_shape = inputs_noise.get_shape().as_list()[-1] # 以list形式返回最后大小
# 生成噪声图片
examples_noise = np.random.uniform(-1, 1, size=[n_images, noise_shape])
samples = sess.run(self.get_generator(inputs_noise, output_dim, False),
feed_dict={inputs_noise: examples_noise})
result = np.squeeze(samples, -1)
return result
def train(self,noise_size, data_shape, batch_size, n_samples):
# 存储loss
losses = []
steps = 0
inputs_real, inputs_noise = DCGAN.get_inputs(noise_size, data_shape[1], data_shape[2], data_shape[3])
g_loss, d_loss = self.get_loss(inputs_real, inputs_noise, data_shape[-1])
g_train_opt, d_train_opt = self.get_optimizer(g_loss, d_loss, beta1, learning_rate)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver=tf.train.Saver()
# summary_writer = tf.summary.FileWriter('log/', sess.graph)
# 迭代epoch
global step_
step_=0
for e in range(epochs):
for batch_i in range(mnist.train.num_examples//batch_size):
steps += 1
batch = mnist.train.next_batch(batch_size)
batch_images = batch[0].reshape((batch_size, data_shape[1], data_shape[2], data_shape[3]))
# scale to -1, 1
batch_images = batch_images * 2 - 1
# noise
batch_noise = np.random.uniform(-1, 1, size=(batch_size, noise_size))
# run optimizer
sess.run(g_train_opt, feed_dict={inputs_real: batch_images,
inputs_noise: batch_noise})
sess.run(d_train_opt, feed_dict={inputs_real: batch_images,
inputs_noise: batch_noise})
if steps % 101 == 0:
train_loss_d = d_loss.eval({inputs_real: batch_images,
inputs_noise: batch_noise})
train_loss_g = g_loss.eval({inputs_real: batch_images,
inputs_noise: batch_noise})
losses.append((train_loss_d, train_loss_g))
# 显示图片
# samples = show_generator_output(sess, n_samples, inputs_noise, data_shape[-1])
# plot_images(samples)
print("Epoch {}/{}....".format(e+1, epochs),
"Discriminator Loss: {:.4f}....".format(train_loss_d),
"Generator Loss: {:.4f}....". format(train_loss_g))
if e%2==0:
samples = self.show_generator_output(sess, n_samples, inputs_noise, data_shape[-1])
DCGAN.plot_images(samples)
saver.save(sess,'./checkpoints/generator.ckpt')
@staticmethod
def plot_images(samples):
fig, axes = plt.subplots(nrows=1, ncols=25, sharex=True, sharey=True, figsize=(50,2))
for img, ax in zip(samples, axes):
ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
ax.axis('off')
# ax.get_xaxis().set_visible(False)
# ax.get_yaxis().set_visible(False)
fig.tight_layout(pad=0) # 控制图像间的间隔
dcgan = DCGAN()
with tf.Graph().as_default():
dcgan.train(noise_size, [-1, 28, 28, 1], batch_size, n_samples)
来源:CSDN
作者:ei1994
链接:https://blog.csdn.net/ei1990/article/details/77169851