Give an input sentence, that has BIO chunk tags:
[('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
I would need to extract the relevant phrases out, e.g. if I want to extract 'NP'
, I would need to extract the fragments of tuples that contains B-NP
and I-NP
.
[out]:
[('What', '0'), ('the airspeed', '2-3'), ('an unladen swallow', '5-6-7')]
(Note: the numbers in the extract tuples represent the token index.)
I have tried extracting it using the following code:
def extract_chunks(tagged_sent, chunk_type):
current_chunk = []
current_chunk_position = []
for idx, word_pos in enumerate(tagged_sent):
word, pos = word_pos
if '-'+chunk_type in pos: # Append the word to the current_chunk.
current_chunk.append((word))
current_chunk_position.append((idx))
else:
if current_chunk: # Flush the full chunk when out of an NP.
_chunk_str = ' '.join(current_chunk)
_chunk_pos_str = '-'.join(map(str, current_chunk_position))
yield _chunk_str, _chunk_pos_str
current_chunk = []
current_chunk_position = []
if current_chunk: # Flush the last chunk.
yield ' '.join(current_chunk), '-'.join(current_chunk_position)
tagged_sent = [('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
But when I have adjacent chunk of the same type:
tagged_sent = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'), ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
print (list(extract_chunks(tagged_sent, chunk_type='NP')))
It outputs this:
[('The Mitsubishi Electric Company Managing Director', '0-1-2-3-4-5'), ('ramen', '7')]
Instead of the desired:
[('The Mitsubishi Electric Company', '0-1-2-3'), ('Managing Director', '4-5'), ('ramen', '7')]
How can this be resolved from the above code?
Other than how it's done from the code above, is there a better solution to extract the desired chunks of a specific chunk_type
?
def extract_chunks(tagged_sent, chunk_type):
grp1, grp2, chunk_type = [], [], "-" + chunk_type
for ind, (s, tp) in enumerate(tagged_sent):
if tp.endswith(chunk_type):
if not tp.startswith("B"):
grp2.append(str(ind))
grp1.append(s)
else:
if grp1:
yield " ".join(grp1), "-".join(grp2)
grp1, grp2 = [s], [str(ind)]
yield " ".join(grp1), "-".join(grp2)
Output:
In [2]: l = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'),
...: ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
In [3]: list(extract_chunks(l, "NP"))
Out[3]:
[('The Mitsubishi Electric Company', '0-1-2-3'),
('Managing Director', '4-5'),
('ramen', '7')]
In [4]: l = [('What', 'B-NP'), ('is', 'B-VP'), ('the', 'B-NP'), ('airspeed', 'I-NP'), ('of', 'B-PP'), ('an', 'B-NP'), ('unladen', 'I-NP'), ('swallow', 'I-NP'), ('?', 'O')]
In [5]: list(extract_chunks(l, "NP"))
Out[5]: [('What', '0'), ('the airspeed', '2-3'), ('an unladen swallow', '5-6-7')]
Try this, it will extract all types of chunks with the indices of their respective words.
def extract_chunks(tagged_sent, chunk_type='NP'):
out_sen = []
for idx, word_pos in enumerate(tagged_sent):
word,bio = word_pos
boundary,tag = bio.split("-") if "-" in bio else ('','O')
if tag != chunk_type:continue
if boundary == "B":
out_sen.append([word, str(idx)])
elif boundary == "I":
out_sen[-1][0] += " "+ word
out_sen[-1][-1] += "-"+ str(idx)
else:
out_sen.append([word, str(idx)])
return out_sen
Demo:
>>> tagged_sent = [('The', 'B-NP'), ('Mitsubishi', 'I-NP'), ('Electric', 'I-NP'), ('Company', 'I-NP'), ('Managing', 'B-NP'), ('Director', 'I-NP'), ('ate', 'B-VP'), ('ramen', 'B-NP')]
>>> output_sent = extract_chunks(tagged_sent)
>>> print map(tuple, output_sent)
[('The Mitsubishi Electric Company', '0-1-2-3'), ('Managing Director', '4-5'), ('ramen', '7')]
I would do it like this:
import re
def extract_chunks(tagged_sent, chunk_type):
# compiles the expression we want to match
regex = re.compile(chunk_type)
# filters matched items in a dictionary whose keys are the matched indexes
first_step = {index_:tag[0] for index_, tag in enumerate(tagged_sent) if regex.findall(tag[1])}
# builds list of lists following output format
second_step = []
for key_ in sorted(first_step.keys()):
if second_step and int(second_step [len(second_step )-1][1].split('-')[-1]) == key_ -1:
second_step[len(second_step)-1][0] += ' {0}'.format(first_step[key_])
second_step[len(second_step)-1][1] += '-{0}'.format(str(key_))
else:
second_step.append([first_step[key_], str(key_)])
# builds output in final format
return [tuple(item) for item in second_step]
You can adapt it to use generators instead of building the whole output in memory like I am doing and refactory it for better performance (I'm in a hurry so the code is far from optimal).
Hope it helps!
来源:https://stackoverflow.com/questions/32333312/how-to-extract-chunks-from-bio-chunked-sentences-python