Performance of row vs column operations in NumPy

|▌冷眼眸甩不掉的悲伤 提交于 2019-12-05 00:45:17

Like many benchmarks, this really depends on the particulars of the situation. It's true that, by default, numpy creates arrays in C-contiguous (row-major) order, so, in the abstract, operations that scan over columns should be faster than those that scan over rows. However, the shape of the array, the performance of the ALU, and the underlying cache on the processor have a huge impact on the particulars.

For instance, on my MacBook Pro, with a small integer or float array, the times are similar, but a small integer type is significantly slower than the float type:

>>> x = numpy.ones((100, 100), dtype=numpy.uint8)
>>> %timeit x.sum(axis=0)
10000 loops, best of 3: 40.6 us per loop
>>> %timeit x.sum(axis=1)
10000 loops, best of 3: 36.1 us per loop

>>> x = numpy.ones((100, 100), dtype=numpy.float64)
>>> %timeit x.sum(axis=0)
10000 loops, best of 3: 28.8 us per loop
>>> %timeit x.sum(axis=1)
10000 loops, best of 3: 28.8 us per loop

With larger arrays the absolute differences become larger, but at least on my machine are still smaller for the larger datatype:

>>> x = numpy.ones((1000, 1000), dtype=numpy.uint8)
>>> %timeit x.sum(axis=0)
100 loops, best of 3: 2.36 ms per loop
>>> %timeit x.sum(axis=1)
1000 loops, best of 3: 1.9 ms per loop

>>> x = numpy.ones((1000, 1000), dtype=numpy.float64)
>>> %timeit x.sum(axis=0)
100 loops, best of 3: 2.04 ms per loop
>>> %timeit x.sum(axis=1)
1000 loops, best of 3: 1.89 ms per loop

You can tell numpy to create a Fortran-contiguous (column-major) array using the order='F' keyword argument to numpy.asarray, numpy.ones, numpy.zeros, and the like, or by converting an existing array using numpy.asfortranarray. As expected, this ordering swaps the efficiency of the row or column operations:

in [10]: y = numpy.asfortranarray(x)
in [11]: %timeit y.sum(axis=0)
1000 loops, best of 3: 1.89 ms per loop
in [12]: %timeit y.sum(axis=1)
100 loops, best of 3: 2.01 ms per loop
In [38]: data = numpy.random.rand(10000,10000)

In [39]: %timeit data.sum(axis=0)
10 loops, best of 3: 86.1 ms per loop

In [40]: %timeit data.sum(axis=1)
10 loops, best of 3: 101 ms per loop

I suspect it will differ depending on the data and the operations.

The easy answer is to write some tests using the same, real world, data of the sort you are planning on using and the functions that you are planning on using and then use cprofile or timeit to compare the speeds, for your operations, depending on how you structure your data.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!